Skip to main content
Log in

Activity traps and the corer: complementary methods for sampling aquatic invertebrates

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

We compared the picture of aquatic invertebrate fauna given by three types of sampling methods: the corer as well as bottom and mid-water activity traps. The corer mainly caught benthic animals (89%), the most numerous groups of which were chironomids and sphaerids. Nekton was more abundant in activity traps (77% in bottom and 63% in mid-water), the most numerous groups were Cladocera and water mites. The size distributions in catch of the corer and the activity traps differed but there was no difference between the two types of activity traps. In activity traps, individuals of the smallest size class were most abundant, wheras animals of the second smallest size class were most numerous in the corer. We suggest that activity traps and the corer could be used as complementary methods to sample aquatic invertebrate communities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Armstrong, D. P. &; T. D. Nudds, 1985. Factors influencing invertebrate size distributions in prairie potholes and implications for coexisting duck species. Freshwat. Inv. Biol. 4: 41–47.

    Google Scholar 

  • Bendell, B. E. &; D. K. McNicol, 1987. Fish predation, lake acidity and the composition of aquatic insect assemblage. Hydrobiologia 150: 193–202.

    Google Scholar 

  • Brinkhurst, R. O., 1974. The Benthos of Lakes. MacMillan Press, London: 190 pp.

    Google Scholar 

  • Brinkman, M. A. &; W. G. Duffy, 1996. Evaluation of four wetland aquatic invertebrate samplers and four sample sorting methods. J. Freshwat. Ecol. 11: 193–200.

    Google Scholar 

  • Downing, J. A., 1984. Sampling the benthos of standing waters. In Downing, J. A. &; F. H. Rigler (eds), A Manual on Methods for the Assesment of Secondary Productivity in Fresh Waters. IBP Handbook No. 17. Blackwell Scientific Publications, Oxford. 2nd edn: 87–130.

    Google Scholar 

  • Eadie, J. McA. &; A. Keast, 1982. Do goldeneye and perch compete for food? Oecologia 55: 225–230.

    Google Scholar 

  • Elmberg, J., P. Nummi, H. Pöysä &; K. Sjöberg, 1992. Do introducing predators affect the reliability of catches in activity traps? Hydrobiologia 239: 187–193.

    Google Scholar 

  • Elmberg, J., P. Nummi, H. Pöysä &; K. Sjöberg, 1993. Factors affecting species number and density of dabbling duck quilds in North Europe. Ecography 16: 251–260.

    Google Scholar 

  • Eriksson, M. O. G., 1979. Competition between freshwater fish and goldeneyes Bucephala clangula (L.) for common prey. Oecologia 41: 99–107.

    Google Scholar 

  • Hanson, J. M., E. E. Prepas &; W. C. Mackay, 1989. Size distribution of the macroinvertebrate community in a freshwater lake. Can. J. Fish. aquat. Sci. 46: 1510–1519.

    Google Scholar 

  • Kenttämies, K., S. Haapaniemi, J. Hynynen, P. Joki-Heiskala &; J. Kämäri, 1985. Biological characteristics of small acidic lakes in southern Finland. Aqua Fenn. 15: 21–33.

    Google Scholar 

  • Mackey, A. P., D. A. Cooling &; A. D. Berrie, 1984. An evaluation of sampling strategies for qualitative surveys of macro-invertebrates in rivers, using pond nets. J. appl. Ecol. 21: 515–534.

    Google Scholar 

  • Meriläinen, J. J. &; J. Hynynen, 1990. Benthic invertebrates in relation to acidity in finnish forest lakes. In Kauppi, P., P. Anttila &; K. Kenttämies (eds), Acidification in Finland. Springer-Verlag, Berlin, Heidelberg: 1029–1043.

    Google Scholar 

  • Mittelbach, G. G., 1981. Patterns of invertebrate size and abundance in aquatic habitats. Can. J. Fish. aquat. Sci. 38: 896–904.

    Google Scholar 

  • Murkin, H. R., P. G. Abbott &; J. A. Kadlec, 1983. A comparison of activity traps and sweep nets for sampling nektonic invertebrates in wetlands. Freshwat. Inv. Biol. 2: 99–106.

    Google Scholar 

  • Neckles, H. A., H. R. Murkin &; J. A. Cooper, 1990. Influences of seasonal flooding on macroinvertebrate abundance in wetland habitats. Freshwat. Biol. 23: 311–322.

    Google Scholar 

  • Nudds, T. D. &; J. N. Bowlby, 1984. Predator-prey size relationships in North American dabbling ducks. Can. J. Zool. 62: 2002–2008.

    Google Scholar 

  • Nummi, P., 1989. Simulated effects of the beaver on vegetation, invertebrates and ducks. Ann. Zool. fenn. 26: 43–52.

    Google Scholar 

  • Nummi, P., 1993. Food relationships of sympatric mallard and green-winged teal. Can. J. Zool. 71: 49–55.

    Google Scholar 

  • Nummi, P. &; H. Pöysä, 1993. Habitat association of ducks in different phases of the breeding season. Ecography 16: 319–328.

    Google Scholar 

  • Nummi, P., J. Elmberg, H. Pöysä, &; K. Sjöberg, 1995. Occurence and density of mallard and green-winged teal in relation to prey size distribution and food abundance. Ann. Zool. fenn. 32: 385–390.

    Google Scholar 

  • Pehrsson, O., 1984. Relationship of food to spatial and temporal breeding strategies of mallards in Sweden. J. Wildl. Mgmt 48: 322–339.

    Google Scholar 

  • Pieczynski, E., 1961. The trap method of capturing water mites (Hydracarina). Ekol. pol. ser. B: 111-115.

  • Pöysä, H., M. Rask &; P. Nummi, 1994. Acidification and ecological interactions at higher trophic levels in small forest lakes: the perch and the common goldeneye. Ann. Zool. fenn. 31: 397–404.

    Google Scholar 

  • Rask, M., 1986. The diet and diel feeding activity of perch, Perca fluviatilis L. in a small lake in southern Finland. Ann. Zool. fenn. 23: 49–57.

    Google Scholar 

  • Rasmussen, J. B., 1993. Patterns in the size structure of littoral zone macroinvertebrate communities. Can. J. Fish. aquat. Sci. 50: 2192–2207.

    Google Scholar 

  • Rodríquez, M. A. &; P. Magnan, 1993. Community structure of lacustrine macrobenthos: do taxon-based and size-based approaches yield similar insights? Can. J. Fish. aquat. Sci. 50: 800–815.

    Google Scholar 

  • Wiederholm, T. &; L. Erikson, 1977. Benthos of an acid lake. Oikos 29: 261–267.

    Google Scholar 

  • Wetzel, R. G., 1990. Land-water interfaces: metabolic and limnological regulators. Verh. int. Ver. Limnol. 24: 6–24.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hyvönen, T., Nummi, P. Activity traps and the corer: complementary methods for sampling aquatic invertebrates. Hydrobiologia 432, 121–125 (2000). https://doi.org/10.1023/A:1004038707992

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004038707992

Navigation