Skip to main content
Log in

On gas bubbles in industrial aluminium cells with prebaked anodes and their influence on the current distribution

  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The secondary current distribution in industrial aluminium cells with prebaked anodes was calculated, taking into account the gas bubbles. The input data were obtained on the basis of a physical model and data suggested in the literature. The bubbles were modelled in the following manner: (i) as very small bubbles dispersed in a homogeneous layer with higher electrical resistivity than the bulk of the electrolyte, (ii) as large bubbles modelled as discrete slabs with infinite resistivity, and (iii) as a combination of (i) and (ii). The bubble size and the number of bubbles, as well as the resistance of the homogeneous bubble layer, were varied to give an equivalent voltage drop in the range 0.1–0.4 V. Large bubbles (slabs) appeared to have a significant screening effect on the anodic current densities. The anodic current densities between slabs showed local maxima, sometimes reaching twice the value of the working current density (0.75 A cm−2). The cathodic current densities had local minima underneath the large anodic bubbles, following their position at the anode. Underneath a bubble of 6.1 cm width, the cathodic current density decreased from 0.75 to 0.23 A cm−2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. W.E. Haupin, J. Metals 23 (1971) 46-49.

    Google Scholar 

  2. R. Odegard, A. Solheim and K. Thovsen, in R. Cutschall (ed.), 'Light Metals 1992' (TMS, Warrendale, PA), pp. 457-463.

    Google Scholar 

  3. S. Fortin, M. Gerhardt and A.J. Gesing, in J.P. McGeer (ed.), 'Light Metals 1984' (TMS, Warrendale, PA), pp. 721-741.

    Google Scholar 

  4. F.N. Ngoya and J. Thonstad, Electrochim. Acta 30 (1985) 1659-1664.

    Google Scholar 

  5. J. Zoric, I. Rousar, J. Thonstad, Z. Kuang, J. Appl. Electrochem. 26 (1996) 795.

    Google Scholar 

  6. J. Zoric, I. Rousar and J. Thonstad, J. Appl. Electrochem. 27, (1997) 916.

    Google Scholar 

  7. J. Zoric, I. Rousar, J. Thonstad and T. Haarberg, J. Appl. Electrochem. 27 (1997) 928.

    Google Scholar 

  8. J. Zoric, I. Rousar and J. Thonstad, in R. Huglen (ed.), 'Light Metals 1997' (TMS, Warrendale, PA), pp. 449-456.

    Google Scholar 

  9. G.J Houston, M.P. Taylor, D.J. Williams and K. Grjotheim, in L.G. Boxall (ed.), 'Light Metals 1988' (TMS, Warrendale, PA), p. 643.

    Google Scholar 

  10. K. Grjotheim, H. Kvande, 'Introduction to Aluminium Electrolysis' (Aluminium-Verlag, Düsseldorf, 1993).

    Google Scholar 

  11. R.C. Dorward, J. Appl. Electrochem. 13 (1983) 569-575.

    Google Scholar 

  12. K. Grjotheim and B.J. Welch, 'Aluminium Smelter Technology', 2nd edn (Aluminium-Verlag, Düsseldorf, 1988).

    Google Scholar 

  13. S. Rolseth, A. Solheim and J. Thonstad, 'Gas Induced Waves at the Bath-Metal Interface in Hall-Heroult Cells', Proceedings of the International Symposium on Reduction and Casting of Aluminium (Aug. 1988), p. 229.

  14. W.D. Zhang, 'Modelling of Anode Gas Evacuation and Current Effciency in Hall-Heroult cells, PhD thesis, Dept. of Chemical and Materials Eng., University of Auckland (1993).

  15. W.D. Zhang, et al. 'Modelling of Anode Gas Evolution in a Hall-Herroult Cell', CHEMECA Australasian Chemical Engineering Conference 91 (Newcastle, 18-20 Sept. 1991), pp. 721-727.

  16. T.M. Hyde and B.J. Welch, in R. Huglen (ed.), 'Light Metals 1997' (TMS, Warrendale, PA), pp. 333-340.

    Google Scholar 

  17. A. Solheim and J. Thonstad, in R.E. Miller (ed.), 'Light Metals 1986' (TMS, Warrendale, PA), pp. 397-403.

    Google Scholar 

  18. W.E. Haupin, The 3rd International Course on the Process Metallurgy of Aluminium (Trondheim, Norway, 1984), chapter 7.

    Google Scholar 

  19. R.J. Aaberg, V. Ranum, K. Williamson and B.J. Welch, in R. Huglen (ed.), 'Light Metals 1997' (TMS, Warrendale, PA), p. 341.

    Google Scholar 

  20. N.S. Siraev, G.V. Forsblom and D. Ya. Khalpakchi, Non-Ferrous Metals 17(7) (1976) 33-35.

    Google Scholar 

  21. K. Kulesh, A.A. Dimitrov and V.O. Volodchenko, Non-Ferrous Metals, 43(9) (1970) 25.

    Google Scholar 

  22. J. Zoric, J. Thonstad and T. Haarberg, in B. Welch (ed.), 'Light Metals 1998' (TMS, Warrendale, PA), pp. 445-453.

    Google Scholar 

  23. Z. Kuang and J. Thonstad, J. Appl. Electrochem. 26 (1996) 481.

    Google Scholar 

  24. J. Hives, J. Thonstad, A. Sterten and P. Fellner, in B. Welch, (ed.), 'Light Metals 1998' (TMS, Warrendale, PA), pp. 187-194.

    Google Scholar 

  25. E. Dewing, Can. Met. Quart. 30 (1991) 153-161.

    Google Scholar 

  26. H. Oye, J. Xue, in J. Evans (ed.), 'Light Metals 1995' (TMS, Warrendale, PA), pp. 265-271.

    Google Scholar 

  27. A.I. Begunov and B.I. Ayushin, Non-Ferrous Metals 18(6) (1975) 237-239.

    Google Scholar 

  28. A.I. Begunov, V.N. Kulkov, S.D. Tsymbalov and A.A. Silushkina, Non-Ferrous Metals 21(6) (1978) 251-253.

    Google Scholar 

  29. A.I. Begunov, Non-Ferrous Metals 19(1) (1976) 6-8.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zoric, J., Solheim, A. On gas bubbles in industrial aluminium cells with prebaked anodes and their influence on the current distribution. Journal of Applied Electrochemistry 30, 787–794 (2000). https://doi.org/10.1023/A:1004037429196

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004037429196

Navigation