Journal of Applied Electrochemistry

, Volume 30, Issue 7, pp 809–816 | Cite as

A new technique for the visualization of the concentration boundary layer in an electrodialysis cell

  • V. Pérez-Herranz
  • J.L. Guiñón
  • J. García-Antón


A new method for the visualization of the concentration boundary layer is described. The technique involves the use of a dilute solution of an indicator which reacts with H+ formed on the membrane surface to form a coloured trace when the electrodialysis cell is operating above the limiting current density. The thickness of the concentration boundary layer determined by the visualization method agrees well with results obtained from limiting current density measurements and theoretical predictions. The visualization method proposed in this work can be used for understanding the transport taking place between a solid wall and a liquid in steady and unsteady flow processes.

concentration boundary layer electrodialysis flow visualization 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W. Merzkirch, Flow Visualization II', Proceedings of the Second International Symposium on Flow Visualization (McGraw-Hill International, Bochum, West Germany, 1980).Google Scholar
  2. 2.
    Y. Nakayama, W.A. Woods and D.G. Clark, 'Visualized Flow'(The Japan Society of Mechanical Engineers. Pergamon Press, Oxford, 1988).Google Scholar
  3. 3.
    S.M. Tieng and Y.C. Wang, J. Fluids Eng. 115 (1993) 515.Google Scholar
  4. 4.
    T. Sarpkaya, J. Fluid Mech. 253 (1993) 105.Google Scholar
  5. 5.
    S. Kato and N. Maruyama, JSME International J. 37 (1994) 912.Google Scholar
  6. 6.
    W. Schöpf and J.C. Patterson, J. Fluid Mech. 295 (1995) 357.Google Scholar
  7. 7.
    H.I. Abu-Mulawek, B.F. Armaly and T.S. Chen, J. Heat Transfer 117 (1995) 895.Google Scholar
  8. 8.
    J.P. Johnston and K.A. Flack, J. Fluids Eng. 118 (1996) 219.Google Scholar
  9. 9.
    V. Sanchez and M. Clifton, J. Chim. Phys. 77 (1980) 421.Google Scholar
  10. 10.
    V.A. Shaposhnik, O.V. Grigorchuk, E.N. Korzhov, V.I. Vasil'eva and Y. Ya Klinov, J. Mem. Sci. 139 (1988) 85.Google Scholar
  11. 11.
    M. Taky, G. Pourcelly, F. Lebon and C. Gavach, J. Electroanal. Chem. 336 (1992) 171.Google Scholar
  12. 12.
    G. Saracco, M.C. Zanetti and M. Onofrio, Ind. Eng. Chem. Res. 32 (1993) 657.Google Scholar
  13. 13.
    M. Law, T. Wen and G.S. Solt, Desalination 109 (1997) 95.Google Scholar
  14. 14.
    P. Sistat and G. Pourcelly, J. Mem. Sci. 123 (1997) 121.Google Scholar
  15. 15.
    R.C. Weast, 'Handbook of Chemistry and Physics', 70th edn (CRC Press, Boca Raton, FA, 1990).Google Scholar
  16. 16.
    V. Pérez-Herranz, J.L. Guiñ ó n and J. García-Antó n, J. Appl. Electrochem. 27 (1997) 469.Google Scholar
  17. 17.
    B.A. Cooke, Electrochim. Acta 3 (1961) 307.Google Scholar
  18. 18.
    Y. Tanaka, M. Iwahashi and M. Kogure, J. Mem. Sci. 92 (1994) 217.Google Scholar
  19. 19.
    E. Costa, 'Fenó menos de Transporte' (Alhambra. Madrid, 1984).Google Scholar
  20. 20.
    C. Bengoa, A. Montillet, P. Legentilhomme and J. Legrand, J. Appl. Electrochem. 27 (1997) 1313.Google Scholar
  21. 21.
    J.H. Gerard, J. Fluid Mech. 46 (1971) 43.Google Scholar
  22. 22.
    D.A. Cowan and J.H. Brown, Ind. Eng. Chem. 51 (1959) 1445.Google Scholar
  23. 23.
    V. Pérez-Herranz, J. García-Antó n and J.L. Guiñ ó n, Chem. Engng. Sci. 52 (1997) 843.Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • V. Pérez-Herranz
    • 1
  • J.L. Guiñón
    • 1
  • J. García-Antón
    • 1
  1. 1.Departamento de Ingeniería Química y Nuclear, E.T.S.I. IndustrialesUniversidad Politécnica de ValenciaValenciaSpain

Personalised recommendations