Skip to main content
Log in

Effects of chloride, bromide and iodide ions on internal stress in films deposited during high speed nickel electroplating from a nickel sulfamate bath

  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The effects of chloride, bromide and iodide additions on the internal stress developed in nickel films deposited during high speed electroplating from nickel sulfamate baths operated close to the nickel ion limiting current density were investigated. The variations in internal strain in the films were detected in situ using a resistance wire-type strain gauge placed on the reverse side of the copper substrate. The film resistance on the as-plated electrodes was measured using an electronic current interrupter technique. The effects of chloride, bromide, and iodide additions could be classified into two groups: (a) chloride and bromide ions, and (b) iodide ions. For chloride and bromide additions over the concentration range of 0.1 to 0.5 M, the nickel deposits exhibited a block- and pyramid-like texture with a (200) crystal orientation. The internal tensile stress developed in 20 μm thick nickel films deposited in the presence of these two halides was as low as 140–170 MPa. Conversely, for additions of iodide, at iodide concentrations greater than 0.1 M the deposited nickel exhibited a fine granular texture of disordered crystal orientation. The internal tensile stress developed in 20 μm thick nickel films deposited from these latter baths tended to rise with increasing iodide concentration to values considerably higher than those observed at similar concentrations of NiCl2 or NiBr2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. W. Ehrfeld, in H. Reichl (Ed.), Proceedings of 1st International Conference on 'Micro Electro, Opto, Mechanical Systems and Components', 'Micro System Technologies 90', (Springer, Berlin, Sept. 1990), pp. 261–2.

    Google Scholar 

  2. T. Hirano, T. Furuhata and H. Fujita, in Proceedings of IEEE Micro Electro Mechanical Systems Workshop, Fort Lauderdale, FL (Feb. 1993), pp. 278–83.

  3. W.H. Safranek, 'The Properties of Electrodeposited Metals and Alloys', 2nd edn, American Electroplaters and Surface Finishing Society, USA (1986), pp. 295–315.

    Google Scholar 

  4. G.A. Di Bari and J.V. Petrocelli, J. Electrochem. Soc. 112 (1965) 99.

    Google Scholar 

  5. I.J. Bear, R.C. Flann, K.J. McDonald, L.J. Rogers and R. Woods, J. Appl. Electrochem. 22 (1992) 8.

    Google Scholar 

  6. M. Pourbaix, 'Atlas of Electrochemical Equilibria in Aqueous Solutions', 2nd edn, National Association of Corrosion Engineers, USA (1974), pp. 330–42.

    Google Scholar 

  7. T. Iwagaki, Plat. Surf. Finish. 67 (July 1980) 51.

    Google Scholar 

  8. R.J. Kendrick and S.A. Watson, Electrochim. Metallorum 1 (1996) 320.

    Google Scholar 

  9. J.L. Marti, Plating 53 (1966) 61.

    Google Scholar 

  10. H. Searles, Plating 53 (1966) 204.

    Google Scholar 

  11. J. Horkans, J. Electrochem. Soc. 126 (1979) 1861.

    Google Scholar 

  12. D.A. Fanner and R.A.F. Hammond, Trans. Inst. Metal Finish. 36 (1958/9) 32.

    Google Scholar 

  13. Y. Tsuru, T. Tamai and K. Hosokawa, in Proceedings of 14th World Congress on Interfinish, 'Interfinish 96', Birmingham, UK (Sept. 1996), Vol. 2, pp. 89–99.

    Google Scholar 

  14. Y. Tsuru and M. Tanaka, Denki Kagaku 64 (1996) 112.

    Google Scholar 

  15. H.M. Ledbetter, Mater. Sci. Engi. 27 (1977) 133.

    Google Scholar 

  16. S. Konishi, J. Met. Finish. Soc. Japan 11 (1960) 273.

    Google Scholar 

  17. K.R. Williams, 'Introduction to Fuel Cells', (Elsevier, New York, 1966), pp. 57–63.

    Google Scholar 

  18. T.P. Hoar and D.J. Arrowsmith, Trans. Inst. Metal Finish . 36 (1958/9) 1.

    Google Scholar 

  19. C. Marie and J. Thon, Compt. Rend. 193 (1931) 31.

    Google Scholar 

  20. H. Watkins and A. Kolk, J. Electrochem. Soc. 108 (1961) 1018.

    Google Scholar 

  21. ASTM, 'X-ray powder data file', Sets 1–5, 4–0836, 4–0850 (ASTM, Philadelphia, PA, 1960).

  22. D. Jope, J. Sell, H.W. Pickering and K.G. Weil, J. Electrochem. Soc. 142 (1995) 2170.

    Google Scholar 

  23. H. Uchida, N. Ikeda and M. Watanabe, J. Electroanal. Chem. 424 (1997) 5.

    Google Scholar 

  24. A. Brenner, V. Zentner and C.W. Jennings, Plating 39 (1952) 865.

    Google Scholar 

  25. J. O'M. Bockris and M. Enyo, Trans. Faraday Soc. 58 (1962) 1187.

    Google Scholar 

  26. A. Knödler, Metallöberflache 20 (1966) 52.

    Google Scholar 

  27. U.R. Evans, J. Chem. Soc., Lond. (1930) 1773.

  28. J. O'M. Bockris, S.D. Argade and E. Gileadi, Electrochim. Acta 14 (1969) 1267.

    Google Scholar 

  29. F. Zucchi, M. Fonsati and G. Trabanelli, J. Appl. Electrochem. 28 (1998) 441.

    Google Scholar 

  30. I. Epelboin and R. Wiart, J. Electrochem. Soc. 118 (1971) 1577.

    Google Scholar 

  31. Y. Tsuru, M. Nomura and F.R. Foulkes, J. Appl. Electrochem., in preparation.

  32. H.I. Philip, M.J. Nicol and A.M.E. Balaes, Rept. No. 1796, National Institute for Metallurgy, Johannesburg, South Africa (1976).

    Google Scholar 

  33. A. Saraby-Reintjes and M. Fleischmann, Electrochim. Acta 29 (1984) 557.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tsuru, Y., Nomura, M. & Foulkes, F. Effects of chloride, bromide and iodide ions on internal stress in films deposited during high speed nickel electroplating from a nickel sulfamate bath. Journal of Applied Electrochemistry 30, 231–238 (2000). https://doi.org/10.1023/A:1003970925918

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1003970925918

Navigation