Advertisement

Journal of Applied Electrochemistry

, Volume 30, Issue 4, pp 499–506 | Cite as

Hydrogen evolving activity on nickel–molybdenum deposits using experimental strategies

  • C.-C. Hu
  • C.-Y. Weng
Article

Abstract

Hydrogen evolution on various Ni–Mo deposits was systematically compared using fractional factorial design (FFD) and response surface methodology (RSM). The electroplating variables such as pH, Ni/Mo atomic ratio and citrate concentration were found to be the key factors affecting the hydrogen evolution activity from the FFD study. The effects of Ni/Mo atomic ratio and citrate concentration in the plating bath on the apparent current density, the exchange current density, and the specific activity (based on i/q*) of hydrogen gas evolution, and on the Mo/(Ni + Mo) ratio of the deposits were examined using regression models. These models, represented as response surface contour plots, showed the maximum hydrogen evolving activity occurring on the Ni–Mo deposit electroplated from the bath with a pH of 8, a Ni/Mo ratio of 3.3 and a citrate concentration of 40 g l−1, respectively.

citrate electrolyte fractional factorial design hydrogen evolution Ni/Mo-deposits 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K.E. Cox and K.D. Williamson, Jr. (Eds), ‘Hydrogen: Its Technology and Implications’, (CRC Press, 1979).Google Scholar
  2. 2.
    D.E. Brown, M.N. Mahmood, A.K. Turner, S.M. Hall and P.O. Fogarty, Int. J. Hydrogen Energy 7 (1982) 405 and references cited therein.Google Scholar
  3. 3.
    R. Kötz and S. Stucki, J. Appl. Electrochem. 17 (1987) 1190.Google Scholar
  4. 4.
    T. Takahashi, in T. Ohta (Ed.), ‘Solar Hydrogen Energy Systems’ (Pergamon Press, New York, 1979), p. 35.Google Scholar
  5. 5.
    C. Fan, D.L. Piron, A. Sleb and P. Paradis, J. Electrochem. Soc. 141 (1994) 382.Google Scholar
  6. 6.
    J. Stevanovic, S. Gojkovic, A. Despic, M. Obradovic and V. Nakic, Electrochim. Acta 43 (1998) 705.Google Scholar
  7. 7.
    H. Yamashita, T. Yamamura and K. Yoshimoto, J. Electrochem. Soc. 140 (1993) 2238.Google Scholar
  8. 8.
    C.-C. Hu, C.-Y. Lin and T.-C. Wen, Mat. Chem. Phys. 44 (1996) 233.Google Scholar
  9. 9.
    S.A.S. Machado and L.A. Avaca, Electrochim. Acta 39 (1994) 1385 and references cited therein.Google Scholar
  10. 10.
    I. Paseka, Electrochim. Acta 38 (1993) 2449.Google Scholar
  11. 11.
    I. Arul Raj and K.I. Vasu, J. Appl. Electrochem. 20 (1990) 32.Google Scholar
  12. 12.
    H. Ezaki, M. Morinaga and S. Watanabe, Electrochim. Acta 38 (1993) 557.Google Scholar
  13. 13.
    M.M. Jaksic, Electrochim. Acta 29 (1984) 1539.Google Scholar
  14. 14.
    A. Brenner, ‘Electrodeposition of Alloys’, Vols 1-2 (Academic Press, New York, 1963).Google Scholar
  15. 15.
    E.J. Podlaha and D. Landolt, J. Electrochem. Soc. 143 (1996) 885 and 893.Google Scholar
  16. 16.
    E. Uekawa, K. Murase, E. Matsubara, T. Hirato and Y. Awakura, J. Electrochem. Soc. 145 (1998) 523.Google Scholar
  17. 17.
    E.J. Podlaha and D. Landolt, J. Electrochem. Soc. 144 (1997) 1672.Google Scholar
  18. 18.
    D.W. Ernst and M.L. Holt, J. Electrochem. Soc. 105 (1958) 686.Google Scholar
  19. 19.
    E. Chassaing, K. Vu Quang and R. Wiart, J. Appl. Electrochem. 19 (1989) 839.Google Scholar
  20. 20.
    G.E.P. Box, W.G. Hunter and J.S. Hunter, ‘Statistics for Experiments’ (J. Wiley & Sons, New York, 1978), p. 374.Google Scholar
  21. 21.
    J.A. Cornell, ‘How to Apply Response Surface Methodology’, Vol. 8 (ASQC, Wisconsin, 1990).Google Scholar
  22. 22.
    D.C. Montgomery, ‘Design and Analysis of Experiments’, 4th edn (J. Wiley & Sons, Singapore, 1997).Google Scholar
  23. 23.
    D.W. Ernst, R.F. Amlie and M.L. Holt, J. Electrochem. Soc. 102 (1955) 463.Google Scholar
  24. 24.
    T.-C. Wen, C.-C. Hu and Y.-J. Li, J. Electrochem. Soc. 140 (1993) 2554.Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • C.-C. Hu
    • 1
  • C.-Y. Weng
    • 1
  1. 1.Department of Chemical EngineeringNational Chung Cheng UniversityChia-YiTaiwan

Personalised recommendations