Skip to main content
Log in

Electrochemical hydrogen evolution on polypyrrole from alkaline solutions

  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Thin films of conductive polypyrrole (PPy) were formed electrochemically from aqueous sulfuric acid. The films showed good electrocatalytic properties towards hydrogen evolution (h.e.r) from alkaline solutions on planar and packed-bed iron electrodes. Current–potential relations were measured at various temperatures and KOH concentrations on Fe, Ni and Fe/PPy planar electrodes. The current was found to be constant during 40 h of operation. SEM micrographs showed no difference in the morphology before and after this period. The activation energy for h.e.r. was found to be 50.2, 58.5 and 33.4 kJ mol−1 for Fe, Ni and Fe/PPy planar electrodes, respectively. The results showed that Fe/PPy can be used to produce hydrogen at both ambient and relatively high temperatures ∼70 C. The polypyrrole coating on iron screens was found to reduce the potential required to sustain a specific rate of hydrogen generation and, hence, the energy consumed during the process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B.V. Tilak, B.P.W.T. Lu, J.E. Coleman and S. Sriniavasan, in 'Comprehensive Treatise of Electrochemistry', Vol. 2, edited by J.O'M. Bockris, B.E. Conway, E. Yeager and R.E. White (Plenum Press, 1981).

  2. D. Plectcher, 'Industrial Electrochemistry' (Chapman & Hall, New York, 1982), Chapter 5.

    Google Scholar 

  3. A.J. Appleby and G. Crepy, in 'Advanced Electrolysis in Alkaline solution', Proceedings of the Symposium on 'Electrode Materials and Processes for Energy Conversion and Storage', Vol. 77b, edited by J.D.E. Molntyre and S. Srinivasan, (1977), Chapter 4.

  4. L. Chen and A. Lasia, J. Electrochem. Soc. 139 (1992) 1058.

    Google Scholar 

  5. G.P. Kittlesen, H.S. White and M.S. Wrighton, J. Am. Chem. Soc. 106 (1984) 7389.

    Google Scholar 

  6. M.T. Nguyen and L.H. Dao, J. Electrochem. Soc. 136 (1989) 2131.

    Google Scholar 

  7. T. Boinowitz, G.T. Suden, U. Tormin, H. Krohn and F. Beck, J. Power Sources 56 (1995) 179.

    Google Scholar 

  8. T. Shimidzu, A. Ohtani and K. Honda, J. Electroanal. Chem. 251 (1988) 323.

    Google Scholar 

  9. F. Mizutani and M. Asia, Bull. Chem. Soc. Jpn 61 (1988) 4458.

    Google Scholar 

  10. M. Umana and J. Walker, Anal. Chem. 58 (1986) 2979.

    Google Scholar 

  11. S. Holdcroft and B.L. Funt, J. Electroanal. Chem. 240 (1988) 89.

    Google Scholar 

  12. L.F. Warren, D.P. Anderson, J. Electrochem. Soc. 134 (1987) 101.

    Google Scholar 

  13. F.T.A. Volk, B.C. Schuemans and E. Barendrecht, Electrochim. Acta 35 (1990) 567.

    Google Scholar 

  14. A.F. Diaz, J.I. Casillo, J.A. Logan and W.Y. Lee, J. Electroanal. Chem. 129 (1981) 115.

    Google Scholar 

  15. J.M. Ko, H.W. Rhee, S.M. Park and C.Y. Kim, J. Electrochem. Soc. 137 (1990) 905.

    Google Scholar 

  16. A. Dall'Olio, Y. Dascola, V. Varacca and V. Bocchi, C. R. Acad. Sci. Ser. C. 267 (1968) 433.

    Google Scholar 

  17. M. Satoh, K. Imanishi and K. Yoshino, J. Electroanal. Chem. 317 (1991) 139.

    Google Scholar 

  18. X.Y. Zheng, Y.Z. Ding and L.A. Bottomley, J. Electrochem. Soc. 142 (1995) L 226.

    Google Scholar 

  19. J.B. Schlenoff and H. Xu, J. Electrochem. Soc. 139 (1992) 2397.

    Google Scholar 

  20. P. Husler and F. Beck, J. Electrochem. Soc. 137 (1990) 2067.

    Google Scholar 

  21. M. Schirmeisen and F. Beck, J. Appl. Electrochem. 19 (1989) 401.

    Google Scholar 

  22. F. Beck and P. Husler, J. Electroanal. Chem. 280 (1990) 159.

    Google Scholar 

  23. K.M. Cheung, D. Bloor and G.C. Stevens, Polymer 29 (1988) 1709.

    Google Scholar 

  24. C.A. Ferreira, S. Aeiyach, J.J. Aaron and P.C. Lacaze, Electrochim. Acta 41 (1996) 1801 and references therein.

    Google Scholar 

  25. J. Newman and W. Tiedman, 'Advances in Electrochemistry and Electrochemical Engineering', Vol. 11, edited by H. Gerischer and C.W. Tobias (Wiley, New York, 1978), p. 352.

    Google Scholar 

  26. F. Goodridge and A.R. Wright, in 'Comprehensive Treatise of Electrochemistry', Vol. 6, Electrochemical Processing, edited by J. O'M. Bockris, B.E. Conway, E. Yeager and R.E. White, (Plenum Press, New York, 1984), Chapter-6, p. 293.

    Google Scholar 

  27. B.G. Ateya and E.S. Arafat, J. Electrochem. Soc. 130 (1983) 380.

    Google Scholar 

  28. B.E. El-Anadouli, M.M. Khader, M.M. Saleh and B.G. Ateya, Electrochim. Acta 36 (1991) 1899.

    Google Scholar 

  29. F.A. Vork and E. Barendrecht, Electrochim. Acta 35 (1990) 135.

    Google Scholar 

  30. M.S. El-Deab, M.E. El-Shakre, B.E. El-Anadouli and B.G. Ateya, Int. J. Hydrogen Energy 21 (1996) 273.

    Google Scholar 

  31. D. Dobos, 'Electrochemical Data', (Elsevier Scientific, Amsterdam, 1975) pp. 242-267.

    Google Scholar 

  32. J.O'M. Bockris and B.O. Yang, J. Electrochem. Soc. 138 (1991) 2237.

    Google Scholar 

  33. A.J. Appleby, M. Chelma, H. Kita and G. Bronoel, 'Encyclopedia of the Electrochemistry of Elements', edited by A.J. Bard (Marcel Dekker, New York, 1982).

    Google Scholar 

  34. T.S. Lee, J. Electrochem. Soc. 118 (1971) 1278.

    Google Scholar 

  35. M.M. Saleh, John W. Weidner, B.E. El-Anadouli and Badr G. Ateya, J. Electrochem. Soc. 142 (1995) 4122.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saleh, M.M. Electrochemical hydrogen evolution on polypyrrole from alkaline solutions. Journal of Applied Electrochemistry 30, 939–944 (2000). https://doi.org/10.1023/A:1003946512641

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1003946512641

Navigation