Skip to main content
Log in

Electrochemical behaviour of olefins: oxidation at ruthenium–titanium dioxide and iridium–titanium dioxide coated electrodes

  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The electrocatalytic behaviour of a series of olefins was studied on thermally prepared Ti/MO2 and Ti/M0.3Ti0.7O2 electrodes (M = Ru, Ir) in 1.0 M HClO4 in mixed solvent (AN/H2O, 40/60v/v). The voltammetric investigation was limited to the potential region preceding the OER on these electrodes materials (E < 1.2 V vs SSCE). Aliphatic olefins (isophorone and cyclohexene) are inactive while the aromatic olefins show a single (safrole) or two (isosafrole) oxidation peaks. The overall catalytic activity of these electrode materials is about the same for both substrates. However, when morphological effects (differences in electrode surface area) are taken into account, normalizing the geometric current density (or faradaic charge) per surface site activity, a slightly better efficiency of the active surface sites is observed for Ru-based electrodes when compared to the equivalent Ir-based materials. Partial substitution of the noble metal catalysts by TiO2 results in a synergetic effect depressing the efficiency of the active surface sites of the TiO2-stabilized electrocatalysts. The decrease with potential cycling of the substrate oxidation current is attributed to dimeric/polymeric film formation blocking the electrode surface. Reflectance and FTIR spectroscopy as well as ohmic resistance data support film formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Trasatti, ‘Electrodes of Conductive Metallic Oxide’, Part A and B Elsevier Scientific Publishing, Amsterdam, 1980/1981.

    Google Scholar 

  2. E.J.M. O'Sullivan and J.R. White, J. Electrochem. Soc. 136 (1989) 2576.

    Google Scholar 

  3. M.E.G. Lyons, C.H. Lyons, A. Michas and P.N. Bartlett, J. Electroanal. Chem. 351 (1993) 245.

    Google Scholar 

  4. K. Asokan and V. Krishnan, Bull. Electrochem. 4 (1988) 827.

    Google Scholar 

  5. S.M. Lin and T.C. Wen, J. Appl. Electrochem. 25 (1995) 73.

    Google Scholar 

  6. D.T. Shieh and B.J.Hwang, J. Electrochem. Soc. 142 (1995) 816.

    Google Scholar 

  7. C. Comninellis and A. De Battisti, J. Chim. Phys. 93 (1996) 673.

    Google Scholar 

  8. O. Simond, V. Schaller and C. Comninellis, Electrochim. Acta 42 (1997) 2009.

    Google Scholar 

  9. L.D. Burke and O.J. Murphy, J. Electroanal. Chem. 109 (1980) 199.

    Google Scholar 

  10. L.D. Burke and J.F. Healy, J. Electroanal. Chem. 124 (1981) 327.

    Google Scholar 

  11. L.D. Burke and M.Mc Carthy, Electrochim. Acta 29 (1984) 211.

    Google Scholar 

  12. R. Kotz and S. Stucki, Electrochim. Acta 31 (1986) 1311.

    Google Scholar 

  13. A.M. Couper, D. Pletcher and F.C. Walsh, Chem. Rev. 90 (1990) 837.

    Google Scholar 

  14. D. Galizzioli, F. Tantardini and S. Trasatti, J. Appl. Electrochem. 5 (1975) 203.

    Google Scholar 

  15. R. Kötz, S. Stucki and B. Carcer, J. Appl. Electrochem. 21 (1991) 14.

    Google Scholar 

  16. S. Stucki, R. Kötz, B. Carcer and W. Suter, J. Appl. Electrochem. 21 (1991) 99.

    Google Scholar 

  17. C. Comninellis and A. Nerini, J. Appl. Electrochem. 25 (1995) 23.

    Google Scholar 

  18. S. Ye and F. Beck, Electrochim. Acta 36 (1991) 597.

    Google Scholar 

  19. N.T. Farinacci, US Pat. 2 794 813 (1957); Chem. Abstr. 51, 6572 (1957); A.V. Bogastskii, A.P. Antonov, Y.V. Gavyevich, V.V. Titor and V.Y. Kalashnikov, USSR Pat. 490 793 (1975); Chem. Abstr. 84, 74254 (1976).

  20. J.M. Madurro, G. Chiericato, W.F. de Giovani and J.R. Romero, Tetrahedron Lett. 29 (1988) 765.

    Google Scholar 

  21. J. Grimshaw and C. Hua, Electrochim. Acta 39 (1994) 497.

    Google Scholar 

  22. R. Garavaglia, C.M. Mari and S. Trasatti, Surf. Technol. 23 (1984) 41.

    Google Scholar 

  23. D. Galizzioli, F. Tantardini and S. Trasatti, J. Appl. Electrochem. 4 (1974) 57.

    Google Scholar 

  24. L.D. Burke and O.J. Murphy, J. Electroanal. Chem. 96 (1979) 19.

    Google Scholar 

  25. S. Ardizzone, G. Fregonara and S. Trasatti, Electrochim. Acta 35 (1990) 263.

    Google Scholar 

  26. T.C. Wen and C.C. Hu, J. Electrochem. Soc. 139 (1992) 2158.

    Google Scholar 

  27. L.A. da Silva, V.A. Alves, M.A.P. da Silva, S. Trasatti and J.F.C. Boodts, Can. J. Chem. 75 (1997) 1483.

    Google Scholar 

  28. C.P. De Pauli and S. Trasatti, J. Electroanal. Chem. 396 (1995) 161.

    Google Scholar 

  29. G.N. Martelli, R. Ornelas and G. Faita, Electrochim. Acta 11-12 (1994) 1551.

    Google Scholar 

  30. A. Bewich, C. Gutiérres and G. Larramona, J. Electroanal. Chem. 332 (1992) 155.

    Google Scholar 

  31. L.A. da Silva, V.A. Alves, M.A.P. da Silva, S. Trasatti and J.F.C. Boodts, Electrochim. Acta 42 (1997) 271.

    Google Scholar 

  32. 32. V.A. Alves, L.A. da Silva and J.F.C. Boodts, J. Appl. Electrochem. 28 (1998) 899.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zanta, C., de Andrade, A. & Boodts, J. Electrochemical behaviour of olefins: oxidation at ruthenium–titanium dioxide and iridium–titanium dioxide coated electrodes. Journal of Applied Electrochemistry 30, 467–474 (2000). https://doi.org/10.1023/A:1003942411733

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1003942411733

Navigation