Journal of Applied Electrochemistry

, Volume 30, Issue 4, pp 447–455 | Cite as

Theoretical analysis of chronoamperometric transients in electrochemical machining and characterization of titanium 6/4 and inconel 718 alloys

  • A.R. Mount
  • K.L. Eley
  • D. Clifton


An analytical expression is derived for the current–time transient for electrochemical machining (ECM) using a planar tool and workpiece configuration. This is obtained as a function of such parameters as the initial interelectrode gap, applied voltage, electrolytic conductivity, valency, density and feed rate. Good theoretical fits to experimental data are found for the alloys titanium 6/4 (Ti6/4) and Inconel 718 (In718) using both sodium chloride and sodium nitrate electrolytes, demonstrating the applicability of this theory. The values of the electrolytic molar conductivity obtained for chloride and nitrate are consistent with the expected conductivity obtained from molar conductivity measurements. The mean valency values obtained for Ti6/4 and In718 are 3.5 ± 0.2 and 3.0 ± 0.2, respectively. The fraction of the applied voltage used to drive the electrochemical surface reactions, V0, has also been obtained. The variation in V0 between alloys when using the same electrolyte and also for each alloy when using different electrolytes is attributed to differences in the thermodynamics of the removal of the metal from the surface metal oxide. For In718 using chloride electrolyte, an increase in V0 is observed at higher applied voltages, consistent with a change in the electrochemical dissolution reaction. Analysis of the variation of V0 at low applied voltages throughout the current–time transient has enabled the current–voltage characteristics of these surfaces electrochemical reactions to be determined, indicating Tafel behaviour. These data show this analysis to be a powerful methodology for understanding and measuring ECM characteristics under realistic ECM conditions.

characterization current analysis electrochemical machining inconel 718 titanium 6/4 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D.G. Risco and A.D. Davydov, J. Am. Soc. Mech. Eng. 64 (1993) 701.Google Scholar
  2. 2.
    M.A. El Dardery, Int. J. Machine Tool Design Res. 22(3) (1982) 147.Google Scholar
  3. 3.
    B. Kellock, J. Machinery and Product. Eng. 140(3604) (1982) 40.Google Scholar
  4. 4.
    O.V.K. Chetty and R.V. Murthy Radhakrishan, Trans. ASME J. Eng. Ind. 103(3) (1981) 341.Google Scholar
  5. 5.
    A.R. Mileham, S.J. Harvey and K.J. Stout, J. Wear 109 (1986) 207.Google Scholar
  6. 6.
    M. Datta, J. Res. Dev. 37(2) (1993) 207.Google Scholar
  7. 7.
    A.K. Karimov, J. Sov. Aeronautics 28(3) (1985) 105.Google Scholar
  8. 8.
    A.G. Makie, J. Math. Anal. Appl. 117(2) (1986) 548.Google Scholar
  9. 9.
    J. Kozak, L. Dabrowski, K. Lubkowski and M. Rozenek. Proceedings of the 13th International CAPE Conference, Warsaw (1997), p. 311.Google Scholar
  10. 10.
    H. Tipton, Proceedings of the 5th International Confererence on ‘Advances in Machine Tool Design and Research’ (1964) p. 509.Google Scholar
  11. 11.
    A.D. Davydov and V.D. Kanshcheev,Elektronnaya Obrabotka Materialov (1985) 80.Google Scholar
  12. 12.
    H. Tipton,Machine. & Prod. Eng. (1968) 325.Google Scholar
  13. 13.
    V.K. Jain and K.P. Rajurkar, Precision Eng. 13(2) (1991) 111.Google Scholar
  14. 14.
    M. Atkey, Indust. Robot 12(4) (1985) 231.Google Scholar
  15. 15.
    D.J. Jones, Chem. Brit. (1988) 1135.Google Scholar
  16. 16.
    B. Wei and J. Kozak, Trans. NAMRI/SME 22 (1994) 147.Google Scholar
  17. 17.
    M. Datta and D. Landolt, Electrochim. Acta. 26(7) (1981) 899.Google Scholar
  18. 18.
    A.D. Davydov, E.N. Kiryak, A.N. Ryabova, V.D. Kashcheev, B.N. Kabanov, Elektronnaya Obrabotka Materialov 5 (1979) 19.Google Scholar
  19. 19.
    C.N. Larsson, in ‘Electrochemical. Machining’ edited by A.E. De Barr, D.A. Oliver (MacDonald, London, 1968), p. 108.Google Scholar
  20. 20.
    ‘CRC Handbook of Chemistry and Physics’, 74th edn, edited by D.R. Lide (CRC Press, Florida, USA, 1993).Google Scholar
  21. 21.
    R.D. Harrison (Ed.), ‘Book of Data’, Nuffeld Advanced Science. (Penguin Books, Harmondsworth, UK, 1972).Google Scholar
  22. 22.
    F.J. DiSalvo and S.J. Clarke, Current Opinion Solid State & Mater. Sci. 1 (1996) 241.Google Scholar
  23. 23.
    M. Datta and D. Landolt, J. Electrochem. Soc. 122 (1975) 1466.Google Scholar
  24. 24.
    D. Landolt, R.H. Muller, C.W. Tobias, J. Electrochem. Soc. 118 (1971) 40.Google Scholar
  25. 25.
    J. Hives and I. Rousar, J. Appl. Electrochem. 23 (1993) 1263.Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • A.R. Mount
    • 1
  • K.L. Eley
    • 1
  • D. Clifton
    • 2
  1. 1.Department of ChemistryUniversity of EdinburghEdinburghGreat Britain
  2. 2.Department of Mechanical EngineeringUniversity of EdinburghEdinburghGreat Britain

Personalised recommendations