Advertisement

Journal of Applied Electrochemistry

, Volume 30, Issue 4, pp 399–404 | Cite as

Electrochemical treatment of waste solutions containing ferrous sulfate by anodic oxidation using an undivided reactor

  • J.M. Bisang
Article

Abstract

This paper describes an analysis of the performance of an electrochemical undivided reactor for the recycling of waste solutions containing ferrous sulfate. The effect of oxygen evolution as side anodic reaction on the figures of merit of the reactor is studied. The results suggest that the anode potential must represent a compromise between the increase in space time yield and the increase in the specific energy consumption. Experimental data are correlated with a mathematical treatment based on the stirred tank model.

anodic oxidation electrochemical engineering environmental electrochemistry ferrous sulfate iron(II) oxidation oxygen evolution stirred tank model waste water 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P.N. Burkard, in ‘Modern Electroplating’, edited by F.A. Lowenheim (J. Wiley & Sons, New York, 1974), chapter 23, p. 583.Google Scholar
  2. 2.
    G. Kreysa and W. Kochanek, J. Electrochem. Soc. 132 (1985) 2084.Google Scholar
  3. 3.
    R.L. Clarke, in ‘Electrochemistry for a Cleaner Environment’, edited by D. Genders and N. Weinberg (The Electrosynthesis Company, New York, 1992), chapter 13, p. 271.Google Scholar
  4. 4.
    K. Rajeshwar and J. Ibanez, ‘Environmental Electrochemistry’ (Academic Press, New York, 1997), chapter 5, p. 401.Google Scholar
  5. 5.
    D. Pletcher and F.C. Walsh, ‘Industrial Electrochemistry’ (Chap-man & Hall, London, 1993), chapter 9, p. 471.Google Scholar
  6. 6.
    G.B. Adams, R.P. Hollandsworth and D.N. Bennion, J. Electrochem. Soc. 122 (1975) 1043.Google Scholar
  7. 7.
    G.B. Adams, R.P. Hollandsworth and D.N. Bennion, AIChE Symposium Series 73(166) (1977) 99.Google Scholar
  8. 8.
    P.E. Marconi, V. Meunier and N. Vatistas, J. Appl. Electrochem. 26 (1996) 693.Google Scholar
  9. 9.
    K.E. Heusler, in ‘Encyclopedia of Electrochemistry of the Elements’, Vol. IX, Part A, edited by A.J. Bard, (Marcel Dekker, New York, 1982).Google Scholar
  10. 10.
    J.-H. Ye and P.S. Fedkiw, J. Electrochem. Soc. 141 (1996) 1483.Google Scholar
  11. 11.
    J.M. Bisang, J. Appl. Electrochem. 26 (1996) 135.Google Scholar
  12. 12.
    M.F. El-Sherbiny, A.A. Zatout, M. Hussien, G.H. Sedahmed, J. Appl. Electrochem. 21 (1991) 537.Google Scholar
  13. 13.
    A.J. Bellamy and B.R. Simpson, Chem. Ind. (London) (1981) 328.Google Scholar
  14. 14.
    I.M. Kolthoff, E.B. Sandell, E.J. Meehan and S. Bruckenstein, ‘Quantitative Chemical Analysis’, 4th edn (MacMillan, New York, 1969).Google Scholar
  15. 15.
    G. Kreysa, DECHEMA Monographs 94 (1983) 123.Google Scholar
  16. 16.
    J. Cano and U. Böhm, Chem. Eng. Sci. 32 (1977) 213.Google Scholar
  17. 17.
    F.C. Walsh, ‘A First Course in Electrochemical Engineering’ (Alresford Press, Alresford, 1993), chapter 6, p. 175.Google Scholar
  18. 18.
    J.S. Newman, ‘Electrochemical Systems’ (Prentice Hall, Englewood Cliffs, NJ, 1973), chapter 17, p. 330.Google Scholar
  19. 19.
    H. Vogt, in ‘Comprehensive Treatise of Electrochemistry’, Vol. 6, edited by E. Yeager, J.O'M. Bockris, B.E. Conway and S. Sarangapani (Plenum Press, New York, 1983), chapter 7, p. 456.Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • J.M. Bisang
    • 1
  1. 1.Facultad de Ingeniería Química (UNL)Programa de Electroquímica Aplicada e Ingeniería Electroquímica (PRELINE)Santa FeArgentina

Personalised recommendations