Journal of Applied Electrochemistry

, Volume 30, Issue 7, pp 831–838 | Cite as

Some aspects of removal of copper and cobalt from mixed ion dilute solutions

  • A.S. Pilla
  • M.M.E. Duarte
  • C.E. Mayer


Some aspects of the electrodeposition of copper and cobalt from aqueous sulphate solutions containing low concentrations of their ions were studied with a view to heavy metal removal via an electrochemical process. Both metals were deposited on a vitreous carbon rotating disc electrode. Deposits formed under different conditions were studied employing linear sweep voltammetry, scanning electron microscopy and EDAX surface analysis. Constant potential electrolysis was used to simulate recovery in a laboratory batch reactor. Copper can be deposited without cobalt interference at potentials as cathodic as −1.0 V despite high Co concentrations. At more negative potentials, both metals are deposited simultaneously, although the copper proportion in the binary mixture is greater than that corresponding to the solution concentration ratio. Voltammetry studies effected under conditions in which codeposition occurs show only minor changes in copper behaviour. On the other hand, cobalt behaviour exhibits significant modifications. Even though formation of an intermetallic compound is possible, ASVL and microscopy tests indicate cobalt deposition in different crystalline forms as the more probable cause. In turn, cobalt deposition depends on the polarization conditions of the electrode and on the cobalt and copper concentrations.

anodic linear sweep voltammetry cobalt copper electrodeposition vitreous carbon 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. Pletcher and F.C. Walsh, 'Industrial Electrochemistry' (Chapman & Hall, 1990).Google Scholar
  2. 2.
    R.D. Armstrong, M. Todd, J.W. Atkinson and K. Scott, J. Appl. Electrochem. 26 (1996) 379.Google Scholar
  3. 3.
    J.A. Trainham and J. Newman, J. Electrochem. Soc. 124 (1977) 1528.Google Scholar
  4. 4.
    D.N. Bennion and J. Newmn, J. Appl. Electrochem. 2 (1972) 113.Google Scholar
  5. 5.
    K. Scott, J. Appl. Electrochem. 18 (1988) 504.Google Scholar
  6. 6.
    F. Coeuret, J. Appl. Electrochem. 10 (1980) 687.Google Scholar
  7. 7.
    R.P. Tison, J. Electrochem. Soc. 128 (1981) 317.Google Scholar
  8. 8.
    D. Pletcher and F.C. Walsh, in D. Genders and N. Weinberg (Eds), 'Electrochemistry for a Cleaner Environment' (The Electrosynthesis Company, 1992), New York.Google Scholar
  9. 9.
    F.C. Walsh, in D. Genders and N. Weinberg (Eds), 'Electrochemistry for a Cleaner Environment' (The Electrosynthesis Company, 1992), New York.Google Scholar
  10. 10.
    M. Schwartz, R. Suzuki and K. Nobe, in E.W. Brooman and J.M. Fenton (Eds), 'Electrochemical Technology Applied to Environmental Problems', Proceedings of the Electrochemical Society 95-12 (1995), p. 81.Google Scholar
  11. 11.
    K. Scott and W.K. Lui,in 'Electrochemical Engineering', The Institution of Chemical Engineers, Symposium Series No. 98, (1986), p. 161.Google Scholar
  12. 12.
    A.J. Chaudhary and S.M. Grimes, J. Chem. Tech. Biotechnol. 56 (1993) 15.Google Scholar
  13. 13.
    V.D. Jović, R.M. Zejnilović, A.R. Despić and J.S. Stevanović, J. Appl. Electrochem. 18 (1988) 511.Google Scholar
  14. 14.
    A.R. Despić, in O.J. Murphy (Ed.), 'Electrochemistry in Transition' (Plenum Press, New York, 1992), p. 453.Google Scholar
  15. 15.
    V.D. Jović, A.R. Despić, J.S. Stevanović and S. Spajić, Electrochim. Acta 34 (1989) 1093.Google Scholar
  16. 16.
    J.S. Stevanović, A.R. Despić and V.D. Jović, Electrochim. Acta 42 (1997) 873.Google Scholar
  17. 17.
    E. Gó mez and E. Vallés, J. Electroanal. Chem. 421 (1997) 157.Google Scholar
  18. 18.
    V.D. Jović, N. Tošicc and M. Stojanović, J. Electroanal. Chem. 420 (1997) 43.Google Scholar
  19. 19.
    V.M. Ló pez-Hirata and E.M. Arce-Estrada, Electrochim. Acta 42 (1997) 61.Google Scholar
  20. 20.
    Y. Jyoko, S. Kashiwabara and Y. Hayashi, J. Electrochem. Soc. 144 (1997) L5.Google Scholar
  21. 21.
    M. Alper, K. Attenborough, R. Hart, S.J. Lane, D.S. Lashmore, C. Younes and W. Schwarzacher, Appl. Phys. Lett. 63 (1993) 2144.Google Scholar
  22. 22.
    G.L. Zhou and C.P. Flynn, Phil. Mag. Lett. 76 (1997) 315.Google Scholar
  23. 23.
    G.L. Zhou, M.H. Yang and C.P. Flynn, Phys. Rev. Lett. 77 (1996) 4580.Google Scholar
  24. 24.
    A. Blondel, B. Doudin and J.P. Ansermet, J. Magnetism and Magnetic Mater. 165 (1997) 34.Google Scholar
  25. 25.
    Y. Jyoko, S. Kashiwabara and Y. Hayashi, J. Electrochem. Soc. 144 (1997) L193.Google Scholar
  26. 26.
    H. Zaman, A. Yamada, H. Fukuda and Y. Ueda, J. Electrochem. Soc. 145 (1998) 565.Google Scholar
  27. 27.
    M. Dariel, L.H. Bennett, D.S. Lashmore, P. Lubitz, M. Rubinstein, W.L. Lechter and M.Z. Harford, J. Appl. Phys. 61 (1987) 4067.Google Scholar
  28. 28.
    K.D. Bird and M. Schlesinger, J. Electrochem. Soc. 142 (1995) L65.Google Scholar
  29. 29.
    Hach Company, 'Handbook for Analysis of Surface Finishing Solutions' (1987).Google Scholar
  30. 30.
    V.Yu. Filinovsky and Yu.V. Pieskov, in E. Yeager, J. O'Bockris, B.E. Conway and S. Sarangapani. (Eds), 'Comprehensive Treatise of Electrochemistry', Vol. 9, (Plenum Press, New York, 1984).Google Scholar
  31. 31.
    T.I. Quickenden and Q. Xu, J. Electrochem. Soc. 143 (1996) 1249.Google Scholar
  32. 32.
    S. Kariuki and H.D. Dewald, Electroanalysis 8 (1996) 307.Google Scholar
  33. 33.
    L. Gertz and F. Lapicque, J. Electrochem. Soc. 143 (1996) 3910.Google Scholar
  34. 34.
    D. Pletcher, I. Whyte, F.C. Walsh and J.P. Millington, J. Appl. Electrochem. 21 (1991) 659.Google Scholar
  35. 35.
    T.C. Franklin and A. Aktan, J. Electrochem. Soc. 135 (1988) 1636.Google Scholar
  36. 36.
    M.C. Vilchenski, A.V. Benedetti and P.T.A. Sumodjo, Joint International Meeting, Paris 1997, The Electrochemical Society and The International Society of Electrochemistry, Meeting Abstract, p. 1894.Google Scholar
  37. 37.
    C.Q. Cui, S.P. Jiang and A.C.C. Tseung, J. Electrochem. Soc. 137 (1990) 3418.Google Scholar
  38. 38.
    H. Baker (Ed.), 'ASM Handbook', Vol. 3, 'Alloy Phase Diagrams' Materials Park, Ohio (1992).Google Scholar
  39. 39.
    C. Karwas and T. Hepel, J. Electrochem. Soc. 136 (1989) 1672.Google Scholar
  40. 40.
    I. Kirilova, I. Ivanov and St. Rashkov, J. Appl. Electrochim. 27 (1997) 1380.Google Scholar
  41. 41.
    F.C. Walsh, 'A First Course in Electrochemical Engineering' (The Electrochemical Consultancy, ROMSEY, England, 1993).Google Scholar
  42. 42.
    A.H. Nahlé, G.W. Reade and F.C. Walsh, J. Appl. Electrochem. 25 (1995) 450.Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • A.S. Pilla
    • 1
  • M.M.E. Duarte
    • 1
    • 2
  • C.E. Mayer
    • 1
    • 2
  1. 1.Instituto de Ingeniería Electroquímica y CorrosiónUniversidad Nacional del SurBahía BlancaArgentina
  2. 2.Comisión de Investigaciones Científicas de la Provincia de Buenos AiresArgentina

Personalised recommendations