Skip to main content
Log in

Seasonal changes in densities of cyanophage infectious to Microcystis aeruginosa in a hypereutrophic pond

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Seasonal changes in densities of cyanophages infectious to Microcystis aeruginosa were studied in a hypereutrophic pond from March 1997 to January 1998 to elucidate the potential impact of the cyanophage on M. aeruginosa mortality. Densities of M. aeruginosa ranged between 1.8 × 104 and 9.4 × 105 cells ml-1, while those of the cyanophages were between 2.0 × 102 and 4.2 × 104 PFU ml-1. Sharp decreases in densities of M. aeruginosa were detected on 10 June and 24 September, as densities of the cyanophages increased, suggesting release of the cyanophages due to the lysis of infected M. aeruginosa. Thus, infection by cyanophages may have a substantial effect on cyanobacterial succession in the pond. Densities of cyanophages became undetectable when those of M. aeruginosa were at low levels during winter. We suggest that there is a tight host-pathogen relationship between M. aeruginosa and the cyanophage in the pond.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Adams, M. H., 1959. Bacteriophage. Inter Science Publishers, New York: 450-451.

    Google Scholar 

  • Angeline, K. Y. L., E. E. Prepas, D. Spink & S. E. Hrudey, 1994. Chemical control of heapatotoxic phytoplankton blooms; Implication for human health. Wat. Res. 29: 1845-1854.

    Google Scholar 

  • Bratbak, G., J. K. Egge & M. Heldal, 1993. Viral mortality of the marine algae Emiliania huxleyi (Haptophyceae) and termination of algal blooms. Mar. Ecol. Progr. Ser. 93: 39-48

    Google Scholar 

  • Bratbak, G., M. Heldal, S. Norland & T. F. Thingstad, 1990. Virus as partners in spring bloom microbial trophodynamics. Apl. envir. Microbiol. 56: 1400-1405.

    Google Scholar 

  • Bratbak, G., W. Wilson & M. Heldal, 1996. Viral control of Emiliania huxleyi blooms? J. Mar. Sys. 9: 75-81

    Google Scholar 

  • Caiola, G.M. & S. Pellegrini, 1984. Lysis of Microcystis aeruginosa (KUTZ) by Bdellovibrio like bacteria. J. Phycol. 20: 471-475.

    Google Scholar 

  • Canter, H. M., 1972. A guide to the fungi occurring on planktonic blue-green algae. In Desikachary, T. V. (ed.), Taxonomy and Biology of Blue-green Algae. University of Madras: 145-158.

  • Crosse, J. E. & M. K. A. Hingorani, 1958. Method for isolating Pseudomonas mors-prunorum phage from soil. Nature 181: 60.

    Google Scholar 

  • Cook, W. L., D. G. Alherard, D. J. Reinhardt & Reiber, 1974. Blooms of an algophorous amoeba associated with Anabaena in a fresh water lake. Wat. Air Soil Pollut. 3: 71-80.

    Google Scholar 

  • Daft, M. J., J. Begg & W. D. P. Stewart, 1970. A virus of bluegreen algae from fresh water habitats in Scotland. New Phytol. 69: 1029-1038.

    Google Scholar 

  • Daft, M. J., M. Susan, B. McCord & W. D. P. Stewart, 1975. Ecological studies on algal-lysing bacteria in fresh waters. Freshwat. Biol. 5: 577-596.

    Google Scholar 

  • Daft, M. J. & W. D. P. Stewart, 1971. Bacterial pathogens of fresh water blue-green algae. New Phytol. 70: 819-829.

    Google Scholar 

  • Daft, M. J. & W. D. P. Stewart, 1973. Light and electron microscope observations on algal lysis by bacterium CP-1. New Phytol. 72: 799-808.

    Google Scholar 

  • Fox, J. A., S. J. Booth & E. L. Martin, 1976. Cyanophage SM-2: a new blue-green algal virus. Virology 73: 557-560.

    Google Scholar 

  • Granhall, U. & B. Berg, 1972. Antimicrobial effects of Cellivibrio on blue-green algae. Arch. Mikrobiol. 84: 234-242.

    Google Scholar 

  • Gromov, B. V., O. G. Ivanov, K. A. Mamkaeva & I. A. Avllon, 1972. A that lyses blue-green algae. Mikrobiologiya 41: 1074-1079.

    Google Scholar 

  • Hilda, M. C. & J. W. G. Lund, 1968. The importance of protozoa in controlling the abundance of planktonic algae in lakes. Proc. linn. Soc. Lond. 179: 203-219.

    Google Scholar 

  • Ichimura, T., K. Nishizawa & M. Chihara (eds), 1978. Media for Blue-green Algae, in Methods in Algalogical Studies. Kyoritsu, Tokyo: 294 pp. (in Japanese).

    Google Scholar 

  • Ishii, N., Z. Kawabata, S. Nakano, M. Man-Gi & R. Takata, 1998. Microbial interactions responsible for dissolved DNA production in a hypereutrophic pond. Hydrobiologia 380: 67-76.

    Google Scholar 

  • Kenneth, W. A. & R. Haselkorn, 1973. Isolation and characterization of a virus infecting a blue-green alga of the genus Synechococcus. Virology 54: 230-236.

    Google Scholar 

  • Leach, J. E. K., W. Lee, R. L. Benson & E. L. Martin, 1980. Ultrastructure of the infection cycle of cyanophage SM-2 in Synechococcus elongatus. J. Phycol. 16: 307-310.

    Google Scholar 

  • Nakano, S., N. Ishii, P. M. Manage & Z. Kawabata, 1998. Trophic roles of heterotrophic nanoflagellates and cilliates among planktonic organisms in a hypereutrophic pond. Aquat. Microb. Ecol. 16: 153-161.

    Google Scholar 

  • Padan, E. & M. Shilo, 1973. Cyanophges-viruses attacking bluegreen algae. Bact. Rev. 37: 343-370.

    Google Scholar 

  • Rami, M. & D. Porath, 1980. Chlorophyll determination in intact tissues using N,N-dimethylformamid. Plant Physiol. 65: 478-479.

    Google Scholar 

  • Robert, E. C., S. Miriam, J. Shane & M. Whitaker, 1976. Interaction of Plectonema boryanum (Cyanophyceae) and the LPP-Cyanophages in continuous culture. J. Phycol. 12: 418-421.

    Google Scholar 

  • Safferman, S. R. & M. E. Morris, 1963. Algal virus: Isolation. Science 140: 679-680.

    Google Scholar 

  • Safferman, S. R. & M. E. Morris, 1964. Control of algae with viruses. J. am. Wat. Wks Ass. 56: 1217-1224.

    Google Scholar 

  • Safferman, S. R. & M. E. Morris, 1967. Observation on the occurrence, distribution and the seasonal incidence of blue-green algal viruses. Appl. Microbiol. 15: 1219-1222.

    Google Scholar 

  • Shilo, M., 1970. Lysis of blue-green algae by Myxobacter. J. Bact. 104: 453-461.

    Google Scholar 

  • Singh, R. N. & P. K. Slingh, 1967. Isolation of cyanophage from India. Nature 216: 1020-1021.

    Google Scholar 

  • Stewart, J. R. & R. N. Brown, 1969. Cytophaga that kills or lysis algae. Science 164: 1253-1254.

    Google Scholar 

  • Suttle, C. A., A. M. Chan & M. T. Cottrell, 1990. Infection of phytoplankton by viruses and reduction of primary productivity. Nature 347: 467-469.

    Google Scholar 

  • Suttle, C. A. & F. Chan, 1992. Mechanisms and rates of decay of marine viruses in sea water. Apl. envir. Microbiol. 58: 3721-3729.

    Google Scholar 

  • Suttle, C. A. & A. M. Chan, 1994. Dynamic and distribution of cyanophage and their effect on marine Synechococcus spp. Apl. envir. Microbiol. 60: 3167-3174.

    Google Scholar 

  • Theresa, S. S. Ho. & M. Alexander, 1974. The feeding of amoebae on algae in culture. J. Phycol. 10: 95-100.

    Google Scholar 

  • Van Etten, J. L., L. C. Lane & R. H. Meints, 1991. Virus and virus like particles of eukaryotic algae. Microbiol. Rev. 55: 586-620.

    Google Scholar 

  • Watanabe, M. F., H. Ken-Ichi, W. C. Wayne & F. Hirota, 1996. Toxic Microcystis. CRC Press, Inc., Florida: 1-10.

    Google Scholar 

  • Yamamoto, Y., 1978. Detection of algal lysing biological agents in lakes by the soft-agar over layer technique. Jap. J. Limnol. 39: 9-14 (in Japanese).

    Google Scholar 

  • Yamamoto, Y., 1981. Observation on the occurrence of microbial agents which cause lysis of blue-green algae in lake Kasumigaura. Jap. J. Limnol. 42: 20-27.

    Google Scholar 

  • Yamamoto, Y. & K. Suzuki, 1977. Ultra structural studies on lysis of blue-green algae by bacterium. J. gen. Appl. Microbiol. 23: 285-295.

    Google Scholar 

  • Yvonne, M. B., M. J. Daft & W. D. P. Stewart, 1981. Cyanobacteria cyanophage interactions in continuous culture. J. appl. Bact. 51: 541-552.

    Google Scholar 

  • Yamada, T., T. Higashiyama & T. Fukuda, 1991. Screening of natural waters for viruses which infect Chlorella cells. Apl. envir. Microbiol. 57: 3433-3437.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Manage, P.M., Kawabata, Z. & Nakano, Si. Seasonal changes in densities of cyanophage infectious to Microcystis aeruginosa in a hypereutrophic pond. Hydrobiologia 411, 211–216 (1999). https://doi.org/10.1023/A:1003868803832

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1003868803832

Navigation