Skip to main content
Log in

Nickel electrowinning using a Pt catalysed hydrogen-diffusion anode. Part I: Effect of chloride and sulfate ions and a magnetic field

  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The use of a Pt catalysed H2-diffusion anode for Ni electrowinning has been studied from typical chloride, Watts and sulfate baths at 25 °C. Higher anodic current densities are found in a three-electrode cell when sulfate ions are gradually replaced by chloride ions. Adherent Ni deposits are obtained from the Watts and sulfate media, whereas in the chloride bath, Cl2 is released at the anode and less adherent deposits are formed. Current efficiencies between 94 and 98 for anodic current densities ranging from 15 to 65 mA cm-2 have been found. The energy costs for Ni electrowinning decrease with increasing chloride content in the bath, and their values are always much lower than those reported using conventional DSA, graphite or lead anodes. All deposits are composed of high-purity Ni, free of heavy metals and other impurities. The crystals have a face-centred cubic structure with a preferential orientation which mainly depends on the medium and current density. A superimposed magnetic field of 0.9 T orientated either parallel or perpendicular to electrodes in a two-electrode cell exerts only a small effect on the crystallographic orientation of Ni, although it has a certain influence on its morphology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.J. Mackinnon, ‘The Electrowinning of Metals from Aqueous Chloride’ in (ed. by K. Osseo-Asare and J.D. Miller), Conference Proceedings of the Metallurgical Society of AIME, Hydrometallurgy Research, Development and Plant Practice (New York, 1982), p. 659.

  2. E. Jackson, ‘Hydrometallurgical Extraction and Reclamation’ (Horwood, Chichester, 1986), p. 221.

    Google Scholar 

  3. Ullmann's, ‘Encyclopedia of Industrial Chemistry’, 5th edn, Vol. A17 (VCH, Weinheim, 1994), p. 189.

    Google Scholar 

  4. J.P. Hoare, J. Electrochem. Soc. 133 (1986) 2491.

    Google Scholar 

  5. J. Ji, W.C. Cooper, D.B. Dreisinger and E. Peters, J. Appl. Electrochem. 25 (1995) 642.

    Google Scholar 

  6. E. Küzeci, R. Kammel and S.K. Gogia, J. Appl. Electrochem. 24 (1994) 730.

    Google Scholar 

  7. V. Nikolova, T. Nikolov, T. Vitanov, A. Möbius, K. Wiesener and D. Schab, J. Appl. Electrochem. 21 (1991) 313.

    Google Scholar 

  8. B.C. Banerjee and A. Goswami, J. Electrochem. Soc. 106 (1959) 20 and 590.

    Google Scholar 

  9. A. Chiba, K. Kitamura and T. Ogawa, Surf. Coat. Technol. 27 (1986) 83.

    Google Scholar 

  10. C. Kollia, N. Spyrellis, J. Amblard, M. Froment and G. Maurin, J. Appl. Electrochem. 20 (1990) 1025.

    Google Scholar 

  11. C. Kollia and N. Spyrellis, Surf. Coat. Technol. 57 (1993) 71.

    Google Scholar 

  12. A.M. El-Sherik, U. Erb and J. Page, Surf. Coat. Technol. 88 (1996) 70.

    Google Scholar 

  13. L. Yang, J. Electrochem. Soc. 101 (1954) 456.

    Google Scholar 

  14. A.L. Danilyuk, V.I. Kurmashev and A.L. Matyushkov, Thin Solid Films 189 (1990) 247.

    Google Scholar 

  15. R.A. Tacken and L.J.J. Janssen, J. Appl. Electrochem. 25 (1995) 1.

    Google Scholar 

  16. O. Devos, A. Olivier, J.P. Chopart, O. Aaboubi and G. Maurin, J. Electrochem. Soc. 145 (1998) 401.

    Google Scholar 

  17. A. Hamnett, P.S. Stevens and R.D. Wingate, J. Appl. Electrochem. 21 (1991) 982.

    Google Scholar 

  18. E. Brillas, R.M. Bastida, E. Llosa and J. Casado, J. Electrochem. Soc. 142 (1995) 1733.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brillas, E., Rambla, J. & Casado, J. Nickel electrowinning using a Pt catalysed hydrogen-diffusion anode. Part I: Effect of chloride and sulfate ions and a magnetic field. Journal of Applied Electrochemistry 29, 1367–1376 (1999). https://doi.org/10.1023/A:1003852924383

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1003852924383

Navigation