Skip to main content
Log in

Modeling of a tidal bottom boundary layer with suspended sediment

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

A one-dimensional model of the vertical exchange of suspended sediment in a tidal boundary layer is proposed. The model includes two linearized momentum equations for the horizontal velocity components and a series of advection–diffusion equations for concentrations of suspended sediment of specific size. Turbulence generated at the sea-bed is computed with the aid of a two-equation closure describing the time–space evolution of the turbulent kinetic energy, K, and of the turbulence macroscale, Λ (K–Λ model). Special attention is paid to the bottom boundary condition for the sediment concentration, which is of mixed type to take into account downward fluxes at times of decelerating flow and slack waters. The model is applied to conditions encountered in a shallow site located in the eastern part of the English Channel. The model is forced with pressure gradients computed with a two-dimensional vertically-integrated tidal model covering the eastern English Channel and the southern part of the North Sea. The tidal currents and the total suspended sediment load predicted by the model are compared with field data collected over the full water depth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • ASCE Task Committee on Turbulence Models in Hydraulic Computations, 1988. Turbulence Modeling of surface water flow and transport: Part I. J. Hydraul. Engin. 114: 970–991.

    Google Scholar 

  • ASCE Task Committee on Turbulence Models in Hydraulic Computations, 1988. Turbulence Modeling of surface water flow and transport: Part II. J. Hydraul. Engin. 114: 992–1014.

    Google Scholar 

  • Augris, C., P. Clabaut, S. Dewez & J.P. Auffret, 1987. Surficial sediments map off Boulogne-sur-Mer (France). (1/43 600). Publication conjointe de l'IFREMER et de la Région Nord-Pas de Calais.

  • Barenblatt, G. T., 1953. Motion of suspended particles in a turbulent flow. Prikl. Matem. Mekh. 17: 261–274.

    Google Scholar 

  • Baum, E. & E. A. Caponi, 1992. Modeling the effects of buoyancy on the evolution of geophysical boundary layers. J. Geophys. Res. 97: 15513–15527.

    Google Scholar 

  • Baumert, H. & G. Radach, 1992. Hysteresis of turbulent kinetic energy in nonrotational tidal flows: A model study. J. Geophys. Res. 97: 3669–3677.

    Google Scholar 

  • Blumberg, A. F. & G. L. Mellor, 1987. A description of a threedimensional coastal ocean circulation model. In Heaps, N. S. (ed.), Three-Dimensional Coastal Ocean Models, Coastal and Estuarine Sciences, 4. A.G.U., Washington (D.C.): 1–16.

    Google Scholar 

  • Boussinesq, J., 1877. Mémoire présenté par divers savants à l'Académie des Sciences de Paris: 23–46.

  • Celik, I. & W. Rodi, 1984. A deposition-entrainment model for suspended sediment transport. Report SFB 210/T/6, University of Karlsruhe, Karlsruhe (FRG): 31 pp.

  • Celik, I. & W. Rodi, 1988. Modeling suspended sediment-transport in nonequilibrium situations. Proc. A.S.C.E. J. Hydraul. Engin. 114: 1157–1191.

    Google Scholar 

  • Celik, I. & W. Rodi, 1991. Suspended sediment-transport capacity for open channel flow. Proc. A.S.C.E. J. Hydraul. Engin. 117: 191–204.

    Google Scholar 

  • Chapalain, G., 1988. Etude hydrodynamique et sédimentaire des environnements littoraux dominés par la houle. Thèse de Doctorat de l'Université Joseph Fourier-Grenoble 1, Grenoble (France): 318 pp.

  • Chapalain, G., Y. P. Sheng & A. Temperville, 1994. About the specification of erosion flux for soft stratified cohesive sediments. Math. Geol. 26: 651–676.

    Google Scholar 

  • Davies, A. M., P. J. Luyten & E. Deleersnijder, 1995. Turbulence energy models in shallow sea oceanography. In Quantitative Skill Assessment for Coastal Ocean Models, Coastal and Estuarine Studies, 47. A.G.U.: 97–123.

    Google Scholar 

  • Gibbs, R. J., M. D. Matthew & D. A. Link, 1971. The relation between sphere size and settling velocity. J. Sediment. Petrol. 41: 7–18.

    Google Scholar 

  • Hess, K. W., 1986. Numerical model of circulation in Chesapeake Bay and the continental shelf. N.O.A.A. Technical Memorandum N.E.S.D.I.S A.I.S.C. 6, National Environmental Satellite, Data, and Information Service, N.O.A.A., U.S. Department of Commerce: 47 pp.

    Google Scholar 

  • Huynh-Thanh, S., 1990. Etude numérique de la couche limite turbulente oscillatoire générée par l'interaction houle-courant en zone côtière. Thèse de Doctorat de l'Institut National Polytechnique de Grenoble, Grenoble (France): 297 pp.

  • Huynh-Thanh, S. & A. Temperville, 1990. A numerical model of the rough turbulent boundary layer in combined wave and current interaction. Proc. of the 22nd International Conference on Coastal Engineering, ASCE, Delft (The Netherlands): 853–866.

  • Huynh-Thanh, S. & A. Temperville, 1995. A numerical prediction of bed shear stresses in the wave-current turbulent boundary layer over flat seabeds. Oceanol. Acta 18: 19–27.

    Google Scholar 

  • Lewellen, W. S., 1977. Use of invariant modeling. In Frost, W. (ed.), Handbook of Turbulence, 1. Plenum, Washington (D.C.): 237–280.

    Google Scholar 

  • Li, M. Z., 1994. Direct skin friction measurements and stress partitioning over movable sand ripples. J. Geophys. Res. 99(C1): 791–799.

    Google Scholar 

  • Lumley, J. L., 1978. Two-phase and non-Newtonian flows. In Bradshaw, P. (ed.), Topics in Applied Physics, 12. Springer-Verlag, New York: 289–324.

    Google Scholar 

  • Mellor, G. L. & T. Yamada, 1982. Development of turbulence closure model for geophysical fluid problems. Rev. Geophys. Space Physics 20: 851–875.

    Google Scholar 

  • Miller, M. C., I. N. McCave & P. D. Komar, 1977. Threshold of sediment motion under unidirectional currents. Sedimentology 24: 507–527.

    Google Scholar 

  • Rijn, L. C., Van, 1986. Mathematical modeling of suspended sediment in non-uniform flows. Proc. A.S.C.E. J. Hydraul. Engin. 112: 1613–1641.

    Google Scholar 

  • Rodi, W., 1980. Turbulence models and their application in hydraulics. Book publication of the International Association of Hydraulic Research, Delft (The Netherlands).

  • Rodi, W., 1981. Examples of turbulence models for incompressible flows. AIAA J. 20: 872–879.

    Google Scholar 

  • Rodi, W., 1987. Examples of calculation methods for flow and mixing in stratified fluids. J. Geophys. Res. 92(C5): 5305–5328.

    Google Scholar 

  • Sheng, Y. P., 1984. A turbulent transport model of coastal processes. Proc. of the 19th International Conference on Coastal Engineering, ASCE, Houston (Texas): 2380–2396.

    Google Scholar 

  • Sheng, Y. P., 1986. Modeling turbulent bottom boundary layer dynamics. Proc. of the 20th International Conference on Coastal Engineering, ASCE, Taipei (Taiwan): 1496–1508.

    Google Scholar 

  • Sheng, Y. P. & C. Villaret, 1989. Modeling the effect of suspended sediment stratification on bottom exchange processes. J. Geophys. Res. 94(C10): 14429–14444.

    Google Scholar 

  • Soo, S. L., 1967. Fluid dynamics of multiphase systems. Blaisdell Publishing Co, Waltham (MA): 524 pp.

    Google Scholar 

  • Smith, J. D. & S. R. McLean, 1977. Spatially averaged flow over a wavy surface. J. Phys. Oceanogr. 82: 1735–1746.

    Google Scholar 

  • Svensson, U., 1979. The structure of the turbulent Ekman layer. Tellus 31: 340–350.

    Google Scholar 

  • Svensson, U. & L. Rahm, 1988. Modeling the near-bottom region of the benthic boundary layer. J. Geophys. Res. 93(C6): 6909–6915.

    Google Scholar 

  • Villaret, C., 1987. Etude expérimentale et numérique des lois d'érosion pour des sédiments cohésifs. Thèse de Doctorat, Université Scientifique, Technologique et Médicale de Grenoble, Grenoble (France): 162 pp.

    Google Scholar 

  • Wooding, R. A., E. F. Bradley & J. K. Marshall, 1973, Drag due to regular arrays of roughness elements of varying geometry. Bound. Layer Meteorol. 5: 285–308.

    Google Scholar 

  • Yalin, M. S., 1972. Mechanics of Sediment Transport. Pergamon Press, New York: 290 pp.

    Google Scholar 

  • Yalin, M. S., 1985. On the determination of ripple geometry. Proc. A.S.C.E. J. Hydraul. Div. 111: 1148–1155.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chapalain, G., Thais, L. & Smaoui, H. Modeling of a tidal bottom boundary layer with suspended sediment. Hydrobiologia 414, 1–12 (1999). https://doi.org/10.1023/A:1003847116455

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1003847116455

Navigation