, Volume 415, Issue 0, pp 131–138 | Cite as

Macrophyte functional variablesversusspecies assemblages as predictors of trophic status in flowing waters


A series of models was developed using functionally-derived variables (mainly based on morphological attributes of freshwater macrophytes) to predict the trophic status of river and associated channel systems. The models were compared with an existing species-assemblage based procedure for predicting British river trophic conditions (the Macrophyte Trophic Ranking scheme, MTR). We compared sites in cooler temperate conditions (in Scotland) and warmer, sub-tropical conditions (in Egypt). In total, we made measurements of 13 traits from >600 individual plant specimens of 33 species growing at 42 sites (divided into independent input and test site datasets). N status (as annual mean concentration in water of total oxidised nitrogen, TON) was only very poorly predicted by this approach. However, P (as annual mean concentration in water of soluble reactive phosphate, SRP) was better predicted: both by a model based on MTR (r = −0.585, p<0.001), and by models using functional attributes of the macrophyte vegetation. River Trophic Status Indicator (RTSI) models based on ranked plant functional group relationship to river water P concentrations (RTSIFG), or field-measured trait sets of the plants (RTSITR) could also individually explain up to about 34% of the variation in P, both for the total dataset and for subsets from Egypt or Scotland alone or for high v. low-flow sites. Combining both types of RTSI measure produced the most powerful predictive model (r = 0.72, p<0.001), explaining just over half the variability in P.

phosphate modelling eutrophication aquatic plants rivers irrigation channels 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abernethy, V. J. A., 1994. The functional ecology of euhydrophyte communities of European riverine wetland ecosystems. Ph.D. Thesis, Univ. Glasgow: 265 pp.Google Scholar
  2. Agami, M., 1989. Effects of water pollution on plant species composition along the Amal River, Israel. Arch. Hydrobiol. 100: 445–454.Google Scholar
  3. Ali, M. M. & M. E. Soltan, 1996. The impact of three industrial effluents on submerged aquatic plants in the River Nile, Egypt. Hydrobiologia 340: 77–83.Google Scholar
  4. Ali, M. M., A. Hamad, I. V. Springuel & K. J. Murphy, 1995. Environmental factors affecting submerged macrophyte communities in regulated waterbodies in Egypt. Arch. Hydrobiol. 133: 107–128.Google Scholar
  5. APHA (American Public Health Association), 1980. Standard Methods for the Examination of Water and Waste Water. 16th edn. American Public Health Association. New York: 1268 pp.Google Scholar
  6. Barko, J. W., D. Gunnison & S. R. Carpenter, 1991. Sediment interactions with submerged macrophyte growth and community dynamics. Aquat. Bot. 41: 41–65.Google Scholar
  7. Bini, L. M., S. M., Thomaz, K. J. Murphy & A. F. M. Camargo, 1999. Aquatic macrophyte distribution in relation to water and sediment conditions in the Itaipu Reservoir, Brazil. Hydrobiologia 415 (Dev. Hydrobiol. 147): 147–154.Google Scholar
  8. Caffrey, J. M., 1985. A scheme for the assessment of water quality using aquatic macrophytes as indicators. J. Life Sci. R. Dubl. Soc. 5: 105–111.Google Scholar
  9. Caffrey, J. M., 1986. Macrophytes as biological indicators of organic pollution in Irish rivers. In Richardson, D. H. S. (ed.), Biological Indicators of Pollution. Royal Irish Academy, Dublin: 77–87.Google Scholar
  10. Daniel, H. & J. Haury, 1996. Ecology of aquatic macrophytes in an Armorican river (the River Scorff, Southern Brittany, France), application to bioindication. Ecologie (Brunoy) 27: 245–256.Google Scholar
  11. De Lange, L. & J. C. J. Van Zon, 1983. A system for the evaluation of aquatic biotopes based on the composition of the macrophytic vegetation. Biol. Conserv. 25: 273–284.Google Scholar
  12. Demars, B., 1997. Classification des hydrophytes sur la base des traits de l'histoire de vie. Thesis, DEA, Univ. Paris XI and Univ. Glasgow: 25 pp.Google Scholar
  13. Ellenberg, H., 1973. Chemical data and aquatic vascular plant as indicator for pollution in the Moosach river system near Munich. Arch. Hydrobiol. 72: 533–549.Google Scholar
  14. Environment Agency, 1996. Methodology for the assessment of freshwater riverine macrophytes for the purposes of the UrbanWasteWater Treatment Directive. Version 2. Environment Agency, Bristol, U.K: 34 pp.Google Scholar
  15. Gauch, H. G. 1982. Multivariate analysis in community ecology. Cambridge University Press, Cambridge, U.K: 298 pp.Google Scholar
  16. Gordon, A. D., 1981. Classification: Methods for the Exploratory Analysis of Multivariate Data. Chapman & Hall, London: 193 pp.Google Scholar
  17. Grime, J. P., J. G. Hodgson & R. Hunt, 1988. Comparative plant ecology. Unwin Hyman, London, 742 pp.Google Scholar
  18. Haslam S.M. & P.A. Wolseley, 1981. River Vegetation: its Identification, Assessment and Management. Cambridge University Press, Cambridge.Google Scholar
  19. Haslam, S. M., J. P. C. Harding & D. H. N. Spence, 1987. Methods for the use of aquatic macrophytes for assessing water quality 1985–86. In Methods for Examination of Waters and Associated Materials. HMSO, London.Google Scholar
  20. Haury, J., 1996. Assessing functional typology involving water quality, physical features and macrophytes in a Normandy river. Hydrobiologia 340: 43–49.Google Scholar
  21. Haury, J. & M.-C. Peltre, 1993. Intérêts et limites des 'indices macrophytes' pour qualifier la mésologie et la physico-chimie des cours d'eau: exemples armoricains, picards et lorrains. Annls. Limnol. 29: 239–253.Google Scholar
  22. Haury, J., M.-C. Peltre, S. Muller, M. Tremolieres, A. Dutartre & M. Gherlesquin, 1996). Macrophyte indices for the assessment of stream water quality in France: preliminary proposals. Ecologie (Brunoy) 27: 233–244.Google Scholar
  23. Hills, J. M., K. J. Murphy, I. D. Pulford & T. H. Flowers, 1994. A method for classifying European riverine wetland ecosystems using functional vegetation groups. Funct. Ecol. 8: 242–252.Google Scholar
  24. Holmes, N. T. H., 1983. Focus on Nature Conservation. 4. Typing British Rivers according to their flora. Nature Conservancy Council, Shrewsbury, U.K.Google Scholar
  25. Husak, S. & V. Vorechovska, 1996. Stream vegetation in different landscape types. Hydrobiologia 340: 141–145.Google Scholar
  26. Jongman, R. G. H., C. J. F. Ter Braak & O. F. R. van Tongeren, 1995. Data Analysis in Community and Landscape Ecology. Cambridge University Press, Cambridge: 299 pp.Google Scholar
  27. Kohler, A., 1975. MacrophytischeWasserpflanzen als Bioindikatorn für Belastungen von Fliessgewässerökosystemen. Verh. Ökologie, Wien 3: 255–276.Google Scholar
  28. Kohler, A. & S. Schiele, 1984. Versauerungsresisternz submerser Makrophyten in Gewässerversauerung in der Bundesrepublik Deutschland. Matierialien 1/84. Erich Scmidt Verlag, Berlin: 353–369.Google Scholar
  29. Krzanowski, W. J. & Y. T. Lai, 1988. A criterion for determining the number of groups in a data-set using sum-of-squares clustering. Biometrics 44: 23–34.Google Scholar
  30. Leishman, M.R. & M. Westoby, 1992. Classifying plants into groups on the basis of associations of individual traits - evidence from Australian semi-arid woodlands. J. Ecol. 80: 417–424.Google Scholar
  31. McIntyre, S., S. Lavorel & R. M. Tremont, 1995. Plant lifehistory attributes: their relationship to disturbance response in herbaceous vegetation. J. Ecol. 83: 31–44.Google Scholar
  32. Moore, B. C., J. E. Lafer & W. H. Funk, 1994. Influence of aquatic macrophytes on phosphorus and sediment porewater chemistry in a freshwater wetland. Aquat. Bot. 49: 137–148.Google Scholar
  33. Murphy, K. J., B. Rørslett & I. Springuel, 1990. Strategy analysis of submerged lake macrophyte communities: an international example. Aquat. Bot. 36: 303–323.Google Scholar
  34. Newbold, C. & N. T. H. Holmes, 1987. Nature conservation: water quality criteria and plants as water quality monitors. Water Pollut. Contr. 86: 345–364.Google Scholar
  35. OECD, 1982. Eutrophication of waters: monitoring, assessment and control. Organisation for Economic Cooperation and Development, Paris, France.Google Scholar
  36. Payne, R. W., P. W. Lane, P. G. N. Digby, S. A. Harding, P. K. Leech, G. W. Morgan, A. D. Todd, R. Thompson, G. Tunnicliffe Wilson, S. J. Welham & R.P. White, 1993. GENSTAT 5 Release 3 - Reference Manual. Clarendon Press, London: 796 pp.Google Scholar
  37. Robach, F., S. Merlin, T. Rolland & M. Tremolieres, 1996. Ecophysiological approach of water quality bioindicating using aquatic plant materials: the role of phosphorus. Ecologie (Brunoy) 27: 203–214.Google Scholar
  38. Schmedtje, U. & F. Kohmann, 1987. Bioindication by macrophytes - can macrophytes indicate saprobity? Arch. Hydrobiol. 109: 455–469.Google Scholar
  39. Spink, A. & K. J. Murphy, 1997. Distribution and environmental regulation of Batrachian Ranunculus in British rivers. Arch. Hydrobiol. 139: 509–525.Google Scholar
  40. Springuel, I. & K. J. Murphy, 1991. Euhydrophyte communities of the River Nile and its impoundments in Egyptian Nubia. Hydrobiologia 218: 35–47.Google Scholar
  41. Standing Committee of Analysts, 1987. Methods for the use of aquatic macrophytes for assessing water quality 1985–86. HMSO, London.Google Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  1. 1.Department of Botany, Faculty of Science at AswanSouth Valley UniversityAswanEgypt
  2. 2.Institute of Biomedical & Life Sciences, Division of Environmental & Evolutionary BiologyUniversity of GlasgowGlasgowScotland E-mail

Personalised recommendations