Journal of Applied Electrochemistry

, Volume 30, Issue 2, pp 187–192 | Cite as

Electrosynthesis of hydrogen peroxide by partial reduction of oxygen in alkaline media. Part II: Wall-jet ring disc electrode for electroreduction of dissolved oxygen on graphite and glassy carbon

  • P. Ilea
  • S. Dorneanu
  • I.C. Popescu
Article

Abstract

A wall-jet ring disc electrode was constructed by adapting a wall-jet flow through electrochemical cell. Commercially available spectral graphite and glassy carbon were used as working disc electrodes and the ring electrode was made of stainless steel. The efficiency and rate constants, measured in a planar parallel flow hydrodynamic regime, indicated the partial electroreduction of dissolved oxygen as a quasi-reversible two-electron process for both electrode materials tested.

graphite and glassy carbon electrodes hydrogen peroxide electrosynthesis partial oxygen reduction wall-jet ring disc electrode 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E.E. Kalu and C. Oloman, J. Appl. Electrochem. 20 (1990) 932.Google Scholar
  2. 2.
    B.V. Tilak, in J.D. Genders and N.L. Weinberg (Eds), ‘Electro-chemistry for a Cleaner Environment', (The Electrosynthesis Company, New York, 1992), p. 387.Google Scholar
  3. 3.
    J.A. McIntyre, The Electrochemical Society Interface, 4, Spring (1995) 29.Google Scholar
  4. 4.
    O. Savadogo and S. Leclerc, Résumé des Comunications, Journeés d'Electrochimie, Montréal (1997), Abstract COP-4.Google Scholar
  5. 5.
    K. Kinoshita, ‘Electrochemical Oxygen Technology’ (J. Wiley & Sons, New York, 1992), p.32.Google Scholar
  6. 6.
    A. Elzing, A. Van der Putten, W. Visscher and E. Barendrecht, J. Electroanal. Chem. 233 (1987) 99.Google Scholar
  7. 7.
    A. Elzing, A. van der Putten, W. Visscher and E. Barendrecht, J. Electroanal. Chem. 233 (1987) 113.Google Scholar
  8. 8.
    T. Hyodo, M. Hayashi, N. Miura and N. Yamazoe, J. Electrochem. Soc. 143 (1996) L266.Google Scholar
  9. 9.
    B. Schubert, E. Gocke, R. Schöllhorn, N. Alonso-Vante and H. Tributsch, Electrochim. Acta 41 (1996) 1471.Google Scholar
  10. 10.
    N. Heller-Ling, M. Prestat, J.-L. Gautier, J.-F. Koenig, G. Poillerat and P. Chartier, Electrochim. Acta 42 (1997) 197.Google Scholar
  11. 11.
    M. Sadakane and E. Steckhan, Chem. Rev. 98 (1998) 219.PubMedGoogle Scholar
  12. 12.
    P. Tatapudi and J.M. Fenton, J. Electrochem. Soc. 140 (1993) L55.Google Scholar
  13. 13.
    C. Paliteiro, A. Hamnett and J.B. Goodenough, J. Electroanal. Chem. 233 (1987) 147.Google Scholar
  14. 14.
    P. Ilea, S. Dorneanu and A. Nicoara, Rev. Roumaine Chim. (1998), in press.Google Scholar
  15. 15.
    Yu. V. Pleskov and V. Yu. Filinovskii, ‘The Rotating Disc Electrode’ (Consultant Bureau, New York, 1976).Google Scholar
  16. 16.
    R. Greef, R. Peat, L.M. Peter, D. Pletcher and J. Robinson, ‘Instrumental Methods in Electrochemistry’ (Ellis Horwood, Chichester, 1985), p. 139.Google Scholar
  17. 17.
    C.M.A. Brett and A.M. Oliveira Brett, ‘Electrochemistry: Principles, Methods, and Applications’ (Oxford University Press, Oxford, 1993), p. 167.Google Scholar
  18. 18.
    S. Strbac, N.A. Anastasijevic and R.R. Adzic, Electrochim. Acta 39 (1994) 983.Google Scholar
  19. 19.
    P.T. Kissinger and W.R. Heineman, ‘Laboratory Techniques in Electroanalytical Chemistry’ (Marcel Dekker, New York, 1996) p. 116.Google Scholar
  20. 20.
    Y. Yamada and H. Matsuda, J. Electroanal. Chem. 44 (1973) 189.Google Scholar
  21. 21.
    F. Coeuret, Chem. Eng. Sci. 30 (1975) 1257.Google Scholar
  22. 22.
    W.J. Albery and C.M.A. Brett, J. Electroanal. Chem. 148 (1983) 201.Google Scholar
  23. 23.
    W.J. Albery and C.M.A. Brett, J. Electroanal. Chem. 148 (1983) 211.Google Scholar
  24. 24.
    H. Gunasingham and B. Fleet, in A.J. Bard (Ed.), 'Electroan-alytical Chemistry', Vol. 16 (Marcel Dekker, New York, 1989), p. 96.Google Scholar
  25. 25.
    B. Soucaze-Guillous and W. Kutner, Electroanalysis 9 (1997) 32.Google Scholar
  26. 26.
    D.-T. Chin and C-H. Tsang, J. Electrochem. Soc. 125 (1978) 1461.Google Scholar
  27. 27.
    R.G. Compton, C.R. Greaves and A.M. Waller, J. Appl. Electrochem. 20 (1990) 575.Google Scholar
  28. 28.
    R.G. Compton, A.C. Fisher and M.A. Latham, J. Phys. Chem. 96 (1992) 8363.Google Scholar
  29. 29.
    R. Appelqvist, G. Marko-Varga, L. Gorton, A. Torstensson and G. Johansson, Anal. Chim. Acta 169 (1985) 237.Google Scholar
  30. 30.
    E. Claude, T. Addou, J.M. Latour and P. Aldebert, J. Appl. Electrochem. 28 (1998) 57.Google Scholar
  31. 31.
    T. Ruzgas, L. Gorton, J. Emneus and G. Marko-Varga, J. Electroanal. Chem. 391 (1995) 41.Google Scholar
  32. 32.
    A.A. Karyakin, E.E. Karyakina and L. Gorton, J. Electroanal. Chem. 456 (1998) 97.Google Scholar
  33. 33.
    A. Lindgren, F.-D. Munteanu, I. Gazaryan, T. Ruzgas and L. Gorton, J. Electroanal. Chem. 458 (1998) 113.Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • P. Ilea
    • 1
  • S. Dorneanu
    • 1
  • I.C. Popescu
    • 1
  1. 1.Department of Physical ChemistryUniversity “Babes-Bolyai”Cluj-NapocaRomania

Personalised recommendations