Skip to main content
Log in

Influences of biotic and abiotic factors on seasonal succession of zooplankton in Hugo Reservoir, Oklahoma, U.S.A.

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

I measured water quality variables, primary productivity, biomass of phytoplankton palatable to zooplankton and zooplankton abundance in mesotrophic Hugo Reservoir, Oklahoma (U.S.A.) at weekly to biweekly intervals between March and September, 1996. Canonical Correspondence Analysis (CCA) was used to estimate the influence of abiotic factors and resource availability in structuring the zooplankton assemblage over the season. Repeated Measures Analysis of Variance (ANOVA) was used to determine spatial and temporal variation in zooplankton abundances and to make comparisons between repeated measures ANOVA and CCA in analyzing the zooplankton assemblage. In addition, I analyzed relationships among cladoceran reproductive parameters (egg ratio, instantaneous birth rate, reproductive ratio and mean brood size) and environmental factors over the season using product moment correlation. Results showed little evidence of bottom-up control of the zooplankton assemblage. CCA and correlations suggested temperature was the most important factor regulating assemblage structure over the season. Several inverse relationships were seen among cladoceran reproductive parameters and temperature. Declines in Holopedium gibberum Zaddach, Bosmina longirostris Muller and Ceriodaphnia lacustris Birge during June corresponded with increases in mean temperature to above 25 °C. Increases in birth rates at the time of population declines suggested that population declines were a result of increased mortality rates (likely due to high water temperature or predation). Spatial variation in the zooplankton assemblage coincided with differences in both temperature and turbidity among sites. Lower abundances of Daphnia parvula Fordyce and C. lacustris and a higher abundance of rotifers at the up-reservoir site coincided with higher mean temperature of the water column and higher turbidity than down-reservoir sites. CCA and ANOVA showed similar results for the spatial and temporal variation in the zooplankton assemblage while CCA provided a more clear approach for analyzing the effects of environmental variables on the assemblage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baumann, P. C. & J. F. Kitchell, 1974. Diel patterns of distribution and feeding of bluegill (Lepomis macrochirus) in Lake Wingra, Wisconsin. Trans. am. Fish. Soc. 103: 255–260.

    Google Scholar 

  • Bottrell, H. H., A. Duncan, Z. M. Gliwicz, E. Grigierek, A. Herzig, A. Hillbricht-Ilkowska, H. Kurasawa, P. Larrson & T. Weglenska, 1976. A review of some problems in zooplankton production studies. Norw. J. Zool. 24: 419–456.

    Google Scholar 

  • Burns, C. W. & J. J. Gilbert, 1986. Direct observations of the mechanisms of interference between Daphnia and Keratella cochlearis. Limnol. Oceanogr. 31: 859–866.

    Google Scholar 

  • Dirnberger, J. M. & S. T. Threlkeld, 1986. Advective control of reservoir zooplankton abundance and dipersion. Freshwat. Biol. 16: 387–396.

    Google Scholar 

  • Dodd, J. J., 1987. Diatoms: The Illustrated Flora of Illinois. Southern Illinois University Press, Carbondale, 477 pp.

    Google Scholar 

  • Edmondson, W. T., 1957. Trophic relations of the zooplankton. Trans. am. microsc. Soc. 24: 225–245.

    Google Scholar 

  • Gannon, J. E., 1971. Two counting cells for the enumeration of zooplankton microcrustacea. Trans. am. micros. Soc. 90: 486–490.

    Google Scholar 

  • Gauch Jr., H. G., 1984. Multivariate Analysis in Community Ecology. Cambridge University Press, New York, 298 pp.

    Google Scholar 

  • Gliwicz, Z. M., A. Ghilarov & J. Pijanowska, 1981. Food and predation as major factors limiting two natural populations of Daphnia cucullata Sars. Hydrobiologia 80: 205–218.

    Google Scholar 

  • Gliwicz, Z. M., 1994. Relative significance of direct and indirect effects of predation by planktivorous fish on zooplankton. Hydrobiologia 272: 201–210.

    Google Scholar 

  • Gliwicz, Z. M. & W. Lampert, 1994. Cluth-size variability in Daphnia: Body-size related effects of egg predation by cyclopoid copepods. Limnol. Oceanogr. 39: 479–485.

    Google Scholar 

  • Gliwicz, Z. M. & M. J. Boavida, 1996. Clutch size and body size at first reproduction in Dapnia pulicaria at different levels of food and predation. J. Plankton. Res. 18: 863–880.

    Google Scholar 

  • Haney, J. F. & D. J. Hall, 1973. Sugar-coated Daphnia: a preservation technique for Cladocera. Limnol. Oceanogr. 18: 331–333.

    Google Scholar 

  • Hebert, P. D. N., 1978. The population biology of Daphnia (Crustacea, Daphnidae). Biol. Rev. 53: 387–426.

    Google Scholar 

  • Hrbacek, J. 1987. Systematics and biogeography of Daphnia species in the northern temperate region. Mem. Ist. ital. Idrobiol. 45: 37–76.

    Google Scholar 

  • Johannsson, O. E. & R. O'Gorman, 1991. Roles of predation, food and temperature in structuring the epilimnetic zooplankton populations in Lake Ontario, 1981—1986. Trans. am. Fish. Soc. 120: 193–208.

    Google Scholar 

  • Mason, C. F. & M. M. Abdul-Hussein, 1991. Population dynamics and production of Daphnia hyalina and Bosmina longirostris in a shallow, eutrophic reservoir. Freshwat. Biol. 25: 243–260.

    Google Scholar 

  • Matveev, V., 1991. Exploitative and interference competition among planktonic crustaceans in a subtropical lake. Arch. Hydrobiol. 123: 53–68.

    Google Scholar 

  • McCabe, G. D. & W. J. O'Brien, 1983. The effects of suspended silt on the feeding and reproduction of Daphnia pulex. Am. Midl. Nat. 110: 324–337.

    Google Scholar 

  • Nadin-Hurley, C. M. & A. Duncan, 1976. A comparison of Daphnid gut particles with the sestonic particles present in two Thames Valley reservoirs throughout 1970 and 1971. Freshwat. Biol. 6: 109–123.

    Google Scholar 

  • Orcutt, J. D. & K. G. Porter, 1984. The synergistic effects of temperature and food concentration on life table parameters of Daphnia. Oecologia 63: 300–306.

    Google Scholar 

  • O'ore, M. K.W., M. L. M. Tackx & M. H. Daro, 1997. The effect of rainfall and tidal rhythm on the community structure and abundance of the zooplankton of Gazi Bay, Kenya. Hydrobiologia 356: 117–126.

    Google Scholar 

  • Paloheimo, J. E., 1974. Calculations of instantaneous birth rate. Limnol. Oceanogr. 19: 692–694.

    Google Scholar 

  • Pennak, R.W., 1989. Fresh-water Invertebrates of the United States. John Wiley and Sons, New York, 628 pp.

    Google Scholar 

  • Porcuna, J. M., R. Morales-Baquero & L. Cruz-Pizzaro, 1994. Effects of Daphnia Longispina on rotifer populations in a natural environment: relative importance of food limitation and interference competition. J. Plankton Res. 16: 691–706.

    Google Scholar 

  • Porter, K. G. & J. D. Orcutt, 1980. Nutritional adequacy, manageability and toxicity as factors that determine the food quality of green and blue-green algae for Daphnia. In Kerfoot, W. C. (ed.), Evolution and Ecology of Zooplankton Communities. University Press of New England, Hanover, New Hampshire: 268–281.

    Google Scholar 

  • Sarnelle, O., 1986. Field assessment of the quality of phytoplanktonic food available to Daphnia and Bosmina. Hydrobiologia 131: 47–56.

    Google Scholar 

  • Smith, G. M., 1950. The Freshwater Algae of the United States. McGraw-Hill Book Company, New York, 719 pp.

    Google Scholar 

  • Sokal, R. R. & F. J. Rohlf, 1995. Biometry, the Principles and Practice of Statistics in Biological Research, 3rd edn. W. H. Freeman & Co., San Francisco, 887 pp.

    Google Scholar 

  • Sommer, U., G. M. Gliwicz, W. Lampert & A. Duncan, 1986. The PEG-model of seasonal succession of planktonic events in fresh waters. Arch. Hydrobiol. 106: 433–471.

    Google Scholar 

  • SPSS Inc., 1995, SPSSR Base System, version 6.1.1.

  • Taylor, B. E. & D. L. Mahoney. 1988. Extinction and recolonization: processes regulating zooplankton dynamics in a cooling reservoir. Verh. int. Ver. Limnol. 23: 1536–1541.

    Google Scholar 

  • Ter Braak, C. J., 1987. CANOCO — a FORTRAN program for canonical community ordination by [partial] [detrended] [canonical] correspondence analysis, principal components analysis, and redundancy analysis (version 2.1).-TNO Inst. of Applied Computer Sci., Wageningen.

    Google Scholar 

  • Threlkeld, S. T., 1979. The midsummer dynamics of two Daphnia species in Wintergreen Lake, Michigan. Ecology 60: 165–179.

    Google Scholar 

  • Threlkeld, S. T., 1982. Water renewal effects on reservoir zooplankton communities. Can. Wat. Res. J. 7: 151–167.

    Google Scholar 

  • Threlkeld, S. T., 1983. Spatial and temporal variation in the summer zooplankton community of a riverine reservoir. Hydrobiologia 107: 249–254.

    Google Scholar 

  • Threlkeld, S. T., 1986a. Resource-mediated demographic variation during the midsummer succession of a cladoceran community. Freshwat. Biol. 16: 673–683.

    Google Scholar 

  • Threlkeld, S. T., 1986b. Life table responses and population dynamics of four cladoceran zooplankton during a reservoir flood. J. Plank. Res. 8: 639–647.

    Google Scholar 

  • Threlkeld, S. T., 1987. Daphnia population fluctuations: patterns and mechanisms. In Peters R. H. & R. de Bernardi (eds), Daphnia. Mem. Ist. ital. Idrobiol. 45: 367–388.

  • Viitasalo, M., I. Vuorinen & S. Saesmaa, 1995. Mesozooplankton dynamics in the northern Baltic Sea: Implications of variations in hydrography and climate. J. Plank. Res. 17: 1857–1878.

    Google Scholar 

  • Ward, F. J. & G. G. C. Robinson, 1974. A review of research on the limnology of West Blue Lake, Manitoba. J. Fish. Res. Bd Can. 31: 977–1005.

    Google Scholar 

  • Webster, K. E. & R. H. Peters, 1978. Some size-dependent inhibitions of larger cladoceran filterers in filamentous suspensions. Limnol. Oceanogr. 23: 1238–1245.

    Google Scholar 

  • Wetzel, R. G. & G. E. Likens, 1979. Limnological Analyses. Springer-Verlag, New York, 391 pp.

    Google Scholar 

  • Wong, B. & F. J. Ward, 1972. Size selection of Daphnia pulicaria by yellow perch (Perca flavescens) fry in West Blue Lake, Manitoba. J. Fish. Res. Bd Can. 29: 1761–1764.

    Google Scholar 

  • Work, K. A., 1997. The ecology of the exotic cladoceran zooplankton, Daphnia lumholtzi, in Lake Texoma, OK-TX. PhD dissertation, University of Oklahoma.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wolfinbarger, W.C. Influences of biotic and abiotic factors on seasonal succession of zooplankton in Hugo Reservoir, Oklahoma, U.S.A.. Hydrobiologia 400, 13–31 (1999). https://doi.org/10.1023/A:1003738608697

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1003738608697

Navigation