Advertisement

Journal of Applied Electrochemistry

, Volume 29, Issue 9, pp 1035–1044 | Cite as

Electrodeposition of zinc–nickel alloys from ammonia-containing baths

  • I. Rodriguez-Torres
  • G. Valentin
  • F. Lapicque
Article

Abstract

This paper describes the use of ammonia-containing baths for Zn–Ni alloy electrodeposition. Buffering properties of the ammonia/ammonium couple limit the local change in pH in the vicinity of the electrode surface caused by simultaneous hydrogen evolution. In addition, it is shown that the divalent zinc and nickel species exist in the form of Zn(NH3) 4 2+ and Ni(NH3) 6 2+ complexes over a large pH range. The electrochemistry of the deposition at pH 10 was investigated by galvanostatic experiments and cyclic voltammetry, and compared with deposition from ammonium chloride baths at pH 5. The Ni content in the alloys were found to be 40–60% higher from the ammonia-containing bath than from the acidic baths. Reduction of divalent ions and hydrogen evolution were shown to occur at potentials 250 mV more cathodic than with baths at pH 5; the deposition mechanism may be affected by complexation of the metal cations by ammonia.

ammonia cyclic voltammetry electrodeposition gas–liquid equilibria speciation diagrams zinc–nickel alloys 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G.F. Hsu, Plat. Surf. Finish. 71 (1984) 52.Google Scholar
  2. 2.
    V. Raman, M. Pushpavanam, S. Jayakrishnan and B.A. Shenoi, Metal Finish. 81 (1983) 85.Google Scholar
  3. 3.
    D.E. Hall, Plat. Surf. Finish. 71 (1983) 59.Google Scholar
  4. 4.
    A. Shibuya, T. Kurimoto, K. Korkawa and K. Noji, Tetso to Hagane 66 (1980) 771.Google Scholar
  5. 5.
    R. Pfiz and G. Strube, Trans. Inst. Metal Finish. 74 (1996) 158.Google Scholar
  6. 6.
    R.G. Baker and C.A. Holden, Plat. Surf. Finish. 72 (1985) 54.Google Scholar
  7. 7.
    A. Brenner, Electrodeposition of Alloys, vol. 1 and 2, Academic Press, New York (1963).Google Scholar
  8. 8.
    E. Chassaung and R. Wiart, Electrochim. Acta 37 (1992) 545.Google Scholar
  9. 9.
    F.J. Fabri-Miranda, O.E. Barcia, O.R. Mattos and R. Wiart, J. Electrochem. Soc. 144 (1997) 3441 and 3449.Google Scholar
  10. 10.
    F.J. Fabri-Miranda, O.E. Barcia, S.L. Diaz, O.R. Mattos and R. Wiart, Electrochim. Acta 41 (1996) 1041.Google Scholar
  11. 11.
    M.F. Mathias and T.W. Chapman, J. Electrochem. Soc. 134 (1987) 574.Google Scholar
  12. 12.
    S.S. Abd El Rehim, E.E. Fouad, S.M. Abd El Wahab and H.H. Hassan, Electrochim. Acta 41 (1996) 1413.Google Scholar
  13. 13.
    M. Pushpavanam and K. Balakrishnan, J. Appl. Electrochem. 26 (1996) 1065.Google Scholar
  14. 14.
    G. Barcelo, J. Garcia, M. Sarret and C. MuÈ ller, J. Appl. Electrochem. 24 (1994) 1249.Google Scholar
  15. 15.
    R. Fratesi and G. Roventi, J. Appl. Electrochem. 22 (1992) 657.Google Scholar
  16. 16.
    L. Domnikov, Metal Finish. 63 (1965) 63.Google Scholar
  17. 17.
    J. Bjerrum, Metal Amine Formation in Aqueous Solutions, Ph.D dissertation, Copenhagen (1941); reprinted by P. Haase & Son (1957)Google Scholar
  18. 18.
    S. Kotrly and L. Sucha, Handbook of Chemical Equilibria in Analytical Chemistry, Ellis Horwood, Chichester (1985).Google Scholar
  19. 19.
    A. Ringbom Complexation in Analytical Chemistry, Interscience Publishers, London (1963).Google Scholar
  20. 20.
    L.G. Sillé n and A.E. Martell, Stability Constants of Metal-Ion Complexes, Supplement No.1, The Chemical Society, London (1971).Google Scholar
  21. 21.
    H. McConnell and N. Davidson, J. Am. Chem. Soc. 72 (1950) 3164.Google Scholar
  22. 22.
    A. Rojas-Hernandez, M.T. Ramirez and I. Gonzales, Analyticam Chim. Acta 278 (1993) 321.Google Scholar
  23. 23.
    B.V. Tilak, A.S. Gendron and M.A. Mosoiu, J. Appl. Electrochem. 7 (1977) 495.Google Scholar
  24. 24.
    J.P. Hoare, J. Electrochem. Soc. 133 (1986) 2491.Google Scholar
  25. 25.
    Z. Wu, L. Fedrizzi and P.L. Honora, Surf. Coat. Technol. 85 (1996) 170.Google Scholar
  26. 26.
    W.G. Proud, E. Gomez, E. Sarret, E. Valles and C. MuÈ ller, J. Appl. Electrochem. 25 (1995) 770.Google Scholar
  27. 27.
    F. Elkhabati, G. Barcelo, M. Sarret and C. MuÈ ller, J. Electroanal. Chem. 419 (1996) 74.Google Scholar
  28. 28.
    I. Epelboin and R. Wiart, J. Electrochem. Soc. 118 (1971) 1577.Google Scholar
  29. 29.
    A. Saraby-Reintjes and M. Fleischmann, Electrochim. Acta 29 (1984) 557.Google Scholar
  30. 30.
    Y-P. Lin and J.R. Selman, J. Electrochem. Soc. 140 (1993) 1299.Google Scholar
  31. 31.
    S.J. Swathirajan, J. Electrochem. Soc. 133, (1986) 671.Google Scholar
  32. 32.
    A. Schumpe, I. Adler and W.D. Deckwer, Biotechnol. Bioeng. 20 (1978) 145.Google Scholar
  33. 33.
    K. Onda, E. Sada, T. Kobayashi, S. Kito and K. Ita, J. Chem. Eng., Japan 3 (1970) 18.Google Scholar
  34. 34.
    T.J. Edwards, G. Maurer, J. Newman and J.M. Prautnitz, AUChE. J. 24(6) (1978) 966.Google Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  • I. Rodriguez-Torres
    • 1
  • G. Valentin
    • 1
  • F. Lapicque
    • 1
  1. 1.Laboratoire des Sciences du Génie ChimiqueCNRS-ENSIC-INPLNancyFrance

Personalised recommendations