Advertisement

Journal of Applied Electrochemistry

, Volume 29, Issue 9, pp 1053–1061 | Cite as

Anodic dissolution of aluminium in organic electrolytes containing perfluoroalkylsulfonyl imides

  • L. PÉTER
  • J. Arai
Article

Abstract

Electrochemical dissolution of aluminium has been investigated in various solutions composed of organic solvents and 1 m lithium bis(perfluoroalkylsulfonyl) imide salts. Potentials of the onset of transpassive dissolution and repassivation as well as dissolution currents have been measured for several systems by using voltammetric methods. Empirical correlation between the composition of the solvent and the dissolution current has been established for mixtures of ethylene carbonate and ethylmethyl carbonate. The effect of the perfluoroalkyl chain length on the dissolution rate has also been studied and the result has been elucidated with the help of considerations on the structure of the ions. Mechanistic information obtained from electrochemical impedance spectra revealed that at least two adsorbed intermediates have to be included in the dissolution mechanism. Conditions of application of lithium perfluoroalkylsulfonyl imides in lithium ion batteries are briefly discussed.

aluminium anodic dissolution lithium ion battery nonaqueous electrolyte perfluoroalkylsulfonyl imides 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D.H. Jang and S.M. Oh, J. Electrochem. Soc. 144 (1997) 3342.Google Scholar
  2. 2.
    Y. Xia, Y. Zhou and M. Yoshio, J. Electrochem. Soc. 144 (1997) 2593.Google Scholar
  3. 3.
    G.G. Amatucci, J.M. Tarascon and L.C. Klein, Solid State Ionics 83 (1996) 167.Google Scholar
  4. 4.
    J. Barthel, R. Buestrich, H.J. Gores, M. Schmidt and M. WuÈ hr, J. Electrochem. Soc. 144 (1997) 3866.Google Scholar
  5. 5.
    A. Webber, J. Electrochem. Soc. 138 (1991) 2586.Google Scholar
  6. 6.
    L.J. Krause, W. Lamanna, J. Summerfield, M. Engle, G. Korba, R. Loch and R. Atanasoski, J. Power Sources 68 (1997) 320.Google Scholar
  7. 7.
    C.A. Vincent and B. Scrosati, 1997. Modern Batteries 2nd edn, Arnold, p. 219.Google Scholar
  8. 8.
    M. Winter and P. Nová k, J. Electrochem. Soc. 145 (1998) L27.Google Scholar
  9. 9.
    Y. Ein-Eli, S.R. Thomas, R. Chadha, T.J. Blakley and V.R. Koch, J. Electrochem. Soc. 144 (1997) 823.Google Scholar
  10. 10.
    D. Aurbach, Y. Ein-Eli, B. Markovsky, A. Zaban, S. Luski, Y. Carmeli and H. Yamin, J. Electrochem. Soc. 142 (1995) 2882.Google Scholar
  11. 11.
    Y. Ein-Eli, S.R. Thomas, V.R. Koch, D. Aurbach, A. Schechter and B. Markovsky, J. Electrochem. Soc. 143 (1996) L273.Google Scholar
  12. 12.
    Y. Ein-Eli, S.F. McDevitt, D. Aurbach, B. Markovsky and A. Schechter, J. Electrochem. Soc. 144 (1997) L180.Google Scholar
  13. 13.
    J. Brauthwaute, G. Nagasubramanian, A. Gonzales, S. Lucero and W. Cieslak, The Electrochemical Society Proceedings Series, PV 96–17, Pennington, NJ, (1996) p. 44.Google Scholar
  14. 14.
    J.B. Foresman and A. Frisch, Exploring Chemistry with Electronic Structure Methods, 2nd edn, Gaussian, Inc., Pittsburg, PA.Google Scholar
  15. 15.
    L. Péter, J. Arau and H. Akahoshi, in preparation. 1061Google Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  • L. PÉTER
    • 1
  • J. Arai
    • 1
  1. 1.Hitachi Research LaboratoryHitachi-shi, Ibaraki-kenJapan

Personalised recommendations