Skip to main content
Log in

Application of photorespiration concepts to whole stream productivity

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

We conducted two-station diel surveys of dissolved oxygen content to estimate whole-stream productivity in the experimental streams of the Monticello Ecological Research Station for two years following channel reconstruction. Community productivity measurements compare well to previous measurements in these streams, but apparent hysteresis in the P/I relation was measured in over two-thirds of the diel surveys. Apparent hysteresis in photosynthesis with solar irradiance is a characteristic of photorespiration, and modeling the effect of light on whole-stream respiratory rates reduced the magnitude of P/I curve hysteresis and improved the predictions of dissolved oxygen content (DO) in the stream. Stream productivity models normally assume respiratory rates measured at night are constant throughout the day, but when this assumption yields apparent hysteresis in the P/I curve, the inclusion of a photorespiration model in the analyses of whole-stream productivity facilitates the comparison of photosynthesis and respiratory rates between different streams. The computed total daily consumption of oxygen by photorespiratory processes is proportional to the total daily photosynthetic production of oxygen in the streams. We also found that the diel DO curves occurring in the experimental streams are best described by a photorespiration model that utilizes a four hour moving average of irradiance. Accounting for photorespiration in the streams increases the apparent efficiency of photosynthesis, improves the accuracy of DO predictions, and reduces uncertainty in photosynthesis and respiratory rate estimates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • American Public Health Association, American Water Works Association & Water Environment Federation, 1992. Standard Methods, 18th edn. New York.

  • Beardall, J., T. Burger-Wiersma, M. Rijkeboer, A. Sukenik, J. Lemoalle, Z. Dubinsky & D. Fontevielle, 1994. Studies on enhanced post-illumination respiration in microalgae. J. Plankton Res. 16: 1401–1411.

    Google Scholar 

  • Barko, J. W., P. C. Murphy & R. G. Wetzel, 1977. An investigation of primary production and ecosystem metabolism in a Lake Michigan dune pond. Arch. Hydrobiol. 81: 155–187.

    CAS  Google Scholar 

  • Butcher, R.W., F. K. Pentelow & J.W. A. Woodley, 1964. Variations in composition of river waters. Int. Rev. ges. Hydrobiol. Hydrogr. 24: 47–80.

    Google Scholar 

  • Courchaine, R. J., 1960. State of Michigan report on oxygen relationships of the Flint River, Flint of Montrose, 1959 survey. Water Resources Commission, Michigan, April 1960. 22 pp.

    Google Scholar 

  • Cummins, K. W., 1974. Structure and function of stream ecosystems. Bioscience 24: 631–641.

    Article  Google Scholar 

  • Daniil, E. I. & J. S. Gulliver, 1988. Temperature dependence of liquid film coefficient for gas transfer. J. Env. Eng. 114: 1224–1229.

    Google Scholar 

  • Fisher, S. G. & G. E. Likens, 1973. Stream ecosystem: organic energy budget. Bioscience 22: 33–35.

    Article  Google Scholar 

  • Gons, H. J. & M. Rijkeboer, 1992. The ‘true’ growth efficiency of phytoplankton as influenced by light attenuation and insolation: implications of the photosynthesis-irradiance relationship. Hydrobiologia 238: 169–176.

    Article  CAS  Google Scholar 

  • Gulliver, J. S. & H. G. Stefan, 1984a. Stream productivity analysis with DORM — I: Development of computational model. Water Res. 18: 1569–1576.

    Article  CAS  Google Scholar 

  • Gulliver, J. S. & H. G. Stefan, 1984b. Stream productivity analysis with DORM — II: Parameter estimation and sensitivity. Water Res. 18: 1577–1588.

    Article  CAS  Google Scholar 

  • Gulliver, J. S. & H. G. Stefan, 1984c. Stream productivity analysis with DORM — III: Productivity of experimental streams. Water Res. 18: 1589–1595.

    Article  CAS  Google Scholar 

  • Hahn, M. H., J. S. Gulliver & H. G. Stefan, 1978. Physical characteristics of the experimental field channels at the USEPA ecological research station in Monticello, MN. St. Anthony Falls Hydraulic Laboratory Project Report 198. University of Minnesota, Minneapolis, MN.

    Google Scholar 

  • Hibbs, D. E., K. L. Parkhill & J. S. Gulliver, 1998. Sulfur hexafluoride gas tracer studies in streams. J. Env. Eng. 124: 752–760.

    Article  CAS  Google Scholar 

  • Hough, R. A., 1979. Photosynthesis, respiration, and organic carbon release in Elodea canadensis Michx. Aquat. Bot. 7: 1–12.

    Article  CAS  Google Scholar 

  • Hynes, H. B. N., 1970. The ecology of running waters. University of Toronto Press. Toronto, Canada.

    Google Scholar 

  • Kelly, M. G., C. M. Hornberger & B. J. Cosby, 1974. Continuous automated measurements of rates of photosynthesis and respiration in an undisturbed river community. Limnol. Oceanogr. 19: 305–312.

    Google Scholar 

  • Kilpatrick, F. A., R. E. Rathbun, N. Yotsukura, G.W. Parker & L. L. DeLong, 1989. Determination of stream reaeration coefficients by use of tracers. Techniques of Water-Resources Investigations of the United States Geological Survey. 52 pp.

  • Kübler, J. E. & J. A. Raven, 1996. Nonequilibrium rates of photosynthesis and respiration under dynamic light supply. J. Phyc. 32: 963–969.

    Article  Google Scholar 

  • Markager, S., 1994. Open-water measurement of areal photosynthesis in a dense phytoplankton community. Arch. Hydrobiol. 129: 405–424.

    Google Scholar 

  • Marzolf, E. R., P. J. Mulholland & A. D. Steinman, 1994. Improvements to the Diurnal Upstream-Downstreams Dissolved Oxygen Change Technique for Determining Whole-Stream Metabolism in Small Streams. Can. J. Fish. aquat. Sci. 51: 1591–1599.

    Google Scholar 

  • Mehler, A. H. & A. H. Brown, 1952. Studies on reactions of illuminated chloroplasts. III. Simultaneous photoproduction and consumption of oxygen studied with oxygen isotopes. Arch. Biochem. Biophys. 38: 365–370.

    Article  PubMed  CAS  Google Scholar 

  • Odum, H. T., 1956. Primary production of flowing water. Limnol. Oceanogr. 1: 102–117.

    Article  Google Scholar 

  • Odum, H. T., 1957. Trophic structure and productivity of Silver Springs. Ecol. Mono. 27: 55–112.

    Article  Google Scholar 

  • Osmond, C. B. & S. C. Grace, 1995. Perspectives on Photoinhibition and Photorespiration in the Field — Quintessential Inefficiencies of the Light and Dark Reactions of Photosynthesis. J. exp. Bot. 46: 1351–1362.

    CAS  Google Scholar 

  • Pahl-Wostl, C., 1992. Dynamic versus static models for photosynthesis. Hydrobiologia 238: 189–196.

    Article  CAS  Google Scholar 

  • Park, S. S. & C. G. Uchrin, 1997. A stoiciometric model for water quality interactions in macrophyte dominated water bodies. Ecol. Mod. 96: 165–174.

    Article  CAS  Google Scholar 

  • Parkhill, K. L. & J. S. Gulliver, 1998. Modeling the effect of light on whole-stream respiration. Ecol. Mod. (accepted).

  • Platt, T., C. L. Gallegos & W. G. Harrison, 1980. Photoinhibition of photosynthesis in natural assemblages on marine phytoplankton. J. mar. Res. 38: 687–701.

    Google Scholar 

  • Portielje, R., K. Kersting & L. Lijklema, 1996. Primary production estimation from continuous oxygen measurements in relation to external nutrient input. Wat. Res. 30: 625–643.

    Article  CAS  Google Scholar 

  • Rutherford, J. C., 1977. Modeling effects of aquatic plants in rivers. J. Env. Eng. 103: 575–591.

    CAS  Google Scholar 

  • Sheldon, S. P. & M. K. Taylor, 1982. Community photosynthesis and respiration in experimental streams. Hydrobiologia 87: 3–10.

    Article  CAS  Google Scholar 

  • Shyman, R., A. S. Raghavendra & P. V. Sane, 1993. Role of dark respiration in photoinhibition of photosynthesis and its reactivation in the cyanobacterium Anacystis nidulans. Phys. Plant. 88: 446–452.

    Article  Google Scholar 

  • Simonsen, J. F. and P. Harremöes, 1977. Oxygen and pH fluctuations in rivers. Wat. Res. 12: 477–489.

    Article  Google Scholar 

  • Søndergaard, M. & R. G. Wetzel, 1980. Photorespiration and internal recycling of CO2 in the submersed angiosperm Scirpus subterminalis. Can. J. Bot. 58: 591–598.

    Google Scholar 

  • Stefan, H. G., J. S. Gulliver, M. H. Hahn & A.Y. Fu, 1980. Water temperature dynamics in experimental field channels: analysis and modeling. St. Anthony Falls Hydraulic Laboratory Project Report No. 193. University of Minnesota, Minneapolis, MN.

    Google Scholar 

  • Stone, S. & G. Ganf, 1981. The influence of previous light history on the respiration of four species of freshwater phytoplankton. Arch. Hydrobiol. 91: 435–462.

    CAS  Google Scholar 

  • Vannote R. L., G. W. Minshall, K. W. Cummins & J. Sendell, 1980. The river continuum concept. Can. J. Fish. aquat. Sci. 37: 130–137.

    Google Scholar 

  • Vincent, W. F., 1990. The dynamic coupling between photosynthesis and light in the phytoplankton environment. Verh. int. Ver. Limnol. 24: 25–37.

    Google Scholar 

  • Wanninkhof, R., J. P. Ledwell & W. S. Broecher, 1987. Gas exchange on Mono Lake and Crowley Lake, California. J. Geophys. Res. 92: 14567–14580.

    Article  CAS  Google Scholar 

  • Wright, R. M. & A. J. McDonnel, 1986. Macrophyte growth in shallow streams: biomass model. J. Env. Eng. 112: 967–981.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Parkhill, K.L., Gulliver, J.S. Application of photorespiration concepts to whole stream productivity. Hydrobiologia 389, 7–19 (1998). https://doi.org/10.1023/A:1003519302002

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1003519302002

Navigation