Skip to main content
Log in

Planktonic bacterial respiration as a function of C:N:P ratios across temperate lakes

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Bacterioplankton and total planktonic community respiration were measured in 14 Canadian lakes during the summer. Total planktonic community respiration (O2 consumption and CO2 production) was best predicted by total phosphorus (TP), with respiratory rates increasing at higher TP levels. The bacterioplankton respiration alone was less well linked to nutrient concentrations. Yet, the rates of both planktonic and bacterial CO2 production changed similarly with changes in the C:N ratio, with the bacterial fraction, on average, contributing about 42% of the total planktonic respiratory rates. Bacterial carbon respired was uncoupled from oxygen consumption, with resultant average planktonic respiratory quotient (RQ) close to 2. Bacterioplankton respiratory rates are affected by a negative relationship between specific aerobic respiration and bacterial biomass. Higher bacterial specific oxygen consumption rates (µg O2 cell-1 d-1) were observed with increasing C:N and C:P ratios, suggesting an increase in maintenance cost at the low cell densities observed in oligotrophic waters. Phosphorus appeared as the limiting nutrient in these lakes and determined total planktonic respiratory rates, however, epilimnetic bacterial respiration was mainly related to the DOC: nutrient ratios.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahrens, M. A. & R. H. Peters, 1991. Plankton community respiration: relationships with size distribution and lake trophy. Hydrobiologia 224: 77–87.

    Google Scholar 

  • APHA (Amer. Pub. Health Assoc.), 1989. Standard methods for the examination of water and waste-water. 17th ed. Washington, D.C.

  • Amon, R. M.W.& R. Benner, 1996. Bacterial utilization of different size classes of dissolved organic matter. Limnol. Oceanogr. 41: 41–51.

    Google Scholar 

  • Azam, F., T. Fenchel, J. G. Field, J. S. Gray, L. A. Meyer-Reil & F. Thingstad, 1983. The ecological role of water-column microbes in the sea. Mar. Ecol. Prog. Ser. 10: 257–263.

    Google Scholar 

  • Benner, R. & S. Opsahl & G. Chin-Leo, 1995. Bacterial carbon metabolism in the Amazon River system. Limnol. Oceanogr. 40: 1262–1270.

    Google Scholar 

  • Biddanda, B., S. Opsahl & R. Benner, 1994. Plankton respiration and carbon flux through bacterioplankton on the Louisiana shelf. Limnol. Oceanogr. 39: 1259–1275.

    Google Scholar 

  • Carlson, C. A. & H.W. Ducklow, 1996. Growth of bacterioplankton and consumption of dissolved organic carbon in the Sargasso Sea. Aquat. Microb. Ecol. 10: 69–85.

    Google Scholar 

  • Carter, J. P., Y. H. Hsiao, S. Spiro & D. J. Richardson, 1995. Soil and sediment bacteria capable of aerobic nitrate respiration. Appl. envir. Microbiol. 61: 2852–2858.

    Google Scholar 

  • Chrzanowski, T. H. & M. Kyle, 1996. Ratios of carbon, nitrogen and phosphorus in Pseudomonas fluorescens as a model for bacterial element ratios and nutrient regeneration. Aquat. Microb. Ecol. 10: 115–122.

    Google Scholar 

  • Chrzanowski, T. H., R. W. Sterner & J. J. Elser, 1995. Nutrient enrichment and nutrient regeneration stimulate bacterioplankton growth. Microb. Ecol. 29: 221–230.

    Google Scholar 

  • Coffin, R. B., J. P. Connolly & P. S. Harris, 1993. Availability of dissolved organic carbon to bacterioplankton examined by oxygen utilization. Mar. Ecol. Prog. Ser. 101: 9–22.

    Google Scholar 

  • Cole, J. J., N. F. Caraco, G. W. Kling & T. K. Kratz, 1994. Carbon dioxide supersaturation in the surface waters of lakes. Science 265: 1568–1570.

    Google Scholar 

  • Cole, J. J., S. Findlay & M. L. Pace, 1988. Bacterial production in fresh and saltwater ecosystems: a cross-system overview. Mar. Ecol. Prog. Ser. 43: 1–10.

    Google Scholar 

  • Coveney, M. F. & R. G. Wetzel, 1995. Biomass, production and specific growth rate of bacterioplankton and coupling to phytoplankton in an oligotrophic lake. Limnol. Oceanogr. 40: 1187–1200.

    Google Scholar 

  • Coveney, M. F. & R. G. Wetzel, 1992. Effects of nutrients on specific growth rate of bacterioplankton in oligotrophic lake water cultures. Appl. envir. Microbiol. 58: 150–156.

    Google Scholar 

  • Currie, D. J., 1990. large-scale variability and interactions among phytoplankton, bacterioplankton and phosphorus. Limnol. Oceanogr. 35: 1437–1455.

    Google Scholar 

  • Cuthbert, I. D. & P. del Giorgio, 1992. Toward a standard method of measuring color in freshwater. Limnol. Oceanogr. 37: 1319–1326.

    Google Scholar 

  • Dawes, E. A., 1985. The effect of environmental oxygen concentration on the carbon metabolism of some aerobic bacteria. In I. S. Kulaev, E. A. Dawes & D.W. Tempest (eds), Environmental regulation of microbial metabolism. Academic.

  • del Giorgio, P., J. J. Cole & A. Cimbleris, 1997. Respiration rates in bacteria exceed phytoplankton production in unproductive aquatic systems. Nature 385: 148–151.

    Google Scholar 

  • del Giorgio, P. & G. Scarborough, 1995. Increase in the proportion of metabolically active bacteria along gradients of enrichment in freshwater and marine plankton: implications for estimates of bacterial growth and production rates. J. Plankton Res. 17: 1905–1924.

    Google Scholar 

  • del Giorgio, P. & R. H. Peters, 1994. Patterns in planktonic P: R ratios in lakes: influence of lake trophy and dissolved organic carbon. Limnol. Oceanogr 34: 772–787.

    Google Scholar 

  • del Giorgio, P. & R. H. Peters, 1993. The influence of DOC on bacteria-chlorophyll relationship in lakes. Verh. int. Ver. Limnol. 25: 359–362.

    Google Scholar 

  • Drabkova, V. G., 1990. Bacterial production and respiration in lakes of different types. Arch. Hydrobiol. Beih. 34: 209–214.

    Google Scholar 

  • Elser, J. J., T. H. Chrzanowski, R. W. Sterner, J. H. Schampel & D. K. Foster, 1995. Elemental ratios and the uptake and release of nutrients by phytoplankton and bacteria in three lakes of the Canadian shield. Microb. Ecol. 29: 145–162.

    Google Scholar 

  • Fenchel, T. & T. H. Blackburn, 1979. Bacteria and mineral cycling: 79–100. Academic.

  • Fenchel, T. & B. B. Jørgensen, 1977. Detritus food chains of aquatic ecosystems: the role of bacteria. Adv. Microb. Ecol. 1: 1–58. Academic.

    Google Scholar 

  • Ferguson, R. L., E. N. Buckley & A. V. Palumbo, 1984. Response of marine bacterio-plankton to differential filtration and confinement. Appl. envir. Microbiol. 47: 49–55.

    Google Scholar 

  • Goldman, J. C., D. A. Caron & M. R. Dennett, 1987. Regulation of gross growth efficiency and ammonium regeneration in bacteria by substrate C:N ratio. Limnol. Oceanogr. 32: 1239–1252.

    Google Scholar 

  • Griesbach, S. J. & R. H. Peters, 1991. The effects of analytical variations on estimates of phosphorus concentration in surface waters. Lake Res. Mgmt 7: 97–106.

    Google Scholar 

  • Hecky, R. E. & P. Kilham, 1988. Nutrient limitation of phytoplankton in freshwater and marine environments: a review of recent evidence on the effects of enrichment. Limnol. Oceanogr. 33: 796–822.

    Google Scholar 

  • Hessen, D. O., T. Andersen & A. Lyche, 1990. Carbon metabolism in a humic lake: pool sizes and cycling through zooplankton. Limnol. Oceanogr. 35: 84–99.

    Google Scholar 

  • Hobbie, J. E., 1992. Microbial control of dissolved organic carbon in lakes: research for the future. Hydrobiologia 229: 169–180.

    Google Scholar 

  • Jahnke, R. A. & D. B. Craven, 1995. Quantifying the role of heterotrophic bacteria in the carbon cycle: a need for respiration rate measurements. Limnol. Oceanogr. 40: 436–441.

    Google Scholar 

  • Kaplan, L. A., 1992. Comparison of high-temperature and persulfate oxidation methods for determination of dissolved organic carbon in freshwaters. Limnol. Oceanogr. 37: 1119–1125.

    Google Scholar 

  • Kirchman, D. L., Y. Suzuki, C. Garside & H. W. Ducklow, 1991. High turnover rates of dissolved organic carbon during a spring phytoplankton bloom. Nature 352: 612–614.

    Google Scholar 

  • Kristiansen, K., H. Nielsen, B. Riemann & J. A. Fuhrman, 1992. Growth efficiencies of freshwater bacterioplankton. Microb. Ecol. 24: 145–160.

    Google Scholar 

  • Kuparinen, J. & A. Heinänen, 1993. Inorganic nutrient and carbon controlled bacterio-plankton growth in the Baltic Sea. Estuar. Coast. Shelf Sci. 37: 271–285.

    Google Scholar 

  • Lampert, W., 1978. Release of dissolved organic carbon by grazing zooplankton. Limnol. Oceanogr. 23: 831–834.

    Google Scholar 

  • Lean, D. R., 1973. Movements of phosphorus between its biologically important forms in lake water. J. Fish Res. Bd Can. 30: 1525–1536.

    Google Scholar 

  • Linley, E. A. S. & R. C. Newell, 1984. Estimates of bacterial growth yields based on plant detritus. Bull. mar. Sci. 35: 409–425.

    Google Scholar 

  • McAulife, C., 1971. G.C. determination of solutes bymultiple phase equilibration. Chem. Tech. 1: 46–51.

    Google Scholar 

  • Neidhardt, F. C., J. L. Ingraham & M. Schaechter, 1990. Physiology of the bacterial cell — A molecular approach. Sinauer assoc, 506 pp.

  • Paerl, H. W., 1993. Interaction of nitrogen and carbon cycles in the marine environment. In T. E. Ford (ed.), Aquatic microbiology: an ecological approach: 343–381. Blackwell.

  • Peters, R. H. & M. Bergmann, 1982. A comparison of different phosphorus fractions as predictors of particulate pigment levels in Lake Memphremagog and its tributaries. Can. J. Fish aquat. Sci. 39: 785–790.

    Google Scholar 

  • Pomeroy, L. R., 1974. The ocean's food web, a changing paradigm. Bioscience 24: 499–504.

    Google Scholar 

  • Pomeroy, L. R., J. E. Sheldon, W. M. Sheldon Jr. & F. Peters, 1995. Limits to growth and respiration of of bacterioplankton in the Gulf of Mexico. Mar. Ecol. Prog. Ser. 117: 259–268.

    Google Scholar 

  • Pomeroy, L. R., J. E. Sheldon & W. M. Sheldon Jr., 1994. Changes in bacterial numbers and leucine assimilation during estimations of microbial respiratory rates in seawater by the precision winkler method. Appl. Envir. Microbiol. 60: 328–332.

    Google Scholar 

  • Pomeroy, L. R. & W. J. Wiebe, 1988. Energetics of microbial food webs. Hydrobiologia 159: 7–18.

    Google Scholar 

  • Porter, K. G. & Y. S. Feig, 1980. The use of DAPI for identifying and counting aquatic microflora. Limnol. Oceanogr. 25: 943–948.

    Google Scholar 

  • Prairie, Y. T., 1990. A comment on ‘nutrient status and nutrient competition of phyto-plankton in a shallow, hypertrophic lake'. Limnol. Oceanogr. 35: 778–779.

    Google Scholar 

  • Rasmussen, J. B., L. Godbout & M. Schallenberg, 1989. The humic content of lake water and its relationship to watershed and lake morphometry. Limnol. Oceanogr. 34: 1336–1343.

    Google Scholar 

  • Rudd, J. W. M., 1975. Dissolved methane. In M. P. Stainton et al. (eds), The chemical analysis of fresh water. 2nd ed. Fish. Res. Bd Can. Misc. Spec. Publ. No. 25: 22–26.

  • SAS (Statistical Analysis System), 1987. Procedures Guide for personal computers — Version 6 edition. SAS Institute Inc., NC, USA.

    Google Scholar 

  • Scavia, D., 1988. On the role of bacteria in secondary production. Limnol. Oceanogr. 33: 1220–1224.

    Google Scholar 

  • Schallenberg, M. & J. Kalff, 1993. The ecology of sediment bacteria in lakes and comparisons with other aquatic ecosystems. Ecology 74: 919–934.

    Google Scholar 

  • Schindler, D.W., S. E. Bayley, P. J. Curtis, B. R. Parker, M. P. Stainton & C. A. Kelly, 1992. Natural and man-caused factors affecting the abundance and cycling of dissolved organic substances in pre-cambrian shield lakes. Hydrobioliologia 229: 1–21.

    Google Scholar 

  • Schwaerter, S., M. Søndergaard, B. Riemann & L. M. Jensen, 1988. Respiration in eutrophic lakes: the contribution of the bacterioplankton and bacterial growth yield. J. Plankton Res. 10: 515–531.

    Google Scholar 

  • Schweitzer, B. & M. Simon, 1995. Growth limitation of planktonic bacteria in a large mesotrophic lake. Microb. Ecol. 30: 89–104.

    Google Scholar 

  • Sherr, B. F., E. B. Sherr & C. S. Hopkinson, 1988. Trophic interactions within pelagic microbial communities: Indications of feedback regulation of carbon flow. Hydrobiologia 159: 19–26.

    Google Scholar 

  • Sokal, R. R. & F. J. Rohlf, 1995. Biometry: the principles and practice of statistics in biological research. 3d ed. W.H. Freeman and Company, 887 pp.

  • Søndergaard, M. & M. Middelboe, 1995. A cross-system analysis of labile dissolved organic carbon. Mar. Ecol. Prog. Ser. 118: 283–294.

    Google Scholar 

  • Søndergaard, M. & N. H. Borch, 1992. Decomposition of dissolved organic carbon (DOC) in lakes. Arch. Hydrobiol. Beih. 37: 9–20.

    Google Scholar 

  • Straskrabová, V., 1993. Respiration to synthesis ratio in microbial assemblages: relation to population density and growth. In R. Guerrero & C. Pedròs-Aliòs (eds), Trends in microbial ecology: 415–420. Spanish Society for Microbiology.

  • Sundh, I., 1992. Biochemical composition of dissolved organic carbon released from natural communities of lake phytoplankton. Arch. Hydrobiol. 125: 347–369.

    Google Scholar 

  • SYSTAT, 1990. SYSTAT: The System for Statistics. SYSTAT Inc., Evanston, IL.

    Google Scholar 

  • Tempest, D. W. & O. M. Neijssel, 1980. Growth yield values in relation to respiration. In C. J. Knowles (ed.), The diversity of bacterial respiratory systems., Vol. I, Chapter 1: 2–31. CRC Press.

  • Toolan, T., J. D. Wehr & S. Findlay, 1991. Inorganic phosphorus stimulation of bacterioplankton production in a meso-eutrophic lake. Appl. envir. Microbiol. 55: 1605–1611.

    Google Scholar 

  • Tranvik, L. J., 1990. Bacterioplankton growth on fractions of dissolved organic carbon of different molecular weights from humic and clear waters. Appl. envir. Microbiol. 56: 1672–1677.

    Google Scholar 

  • Tranvik, L. J., 1988. Availability of dissolved organic carbon for planktonic bacteria in oligotrophic lakes of differing humic content. Microb. Ecol. 16: 311–322.

    Google Scholar 

  • Wetzel, R. G., 1992. Gradient-dominated ecosystems: sources and regulatory functions of dissolved organic matter in freshwater ecosystems. Hydrobiologia 229: 181–198.

    Google Scholar 

  • Zar, J. H., 1984. Biostatistical analysis. Prentice-Hall, 718 pp.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cimbleris, A.C.P., Kalff, J. Planktonic bacterial respiration as a function of C:N:P ratios across temperate lakes. Hydrobiologia 384, 89–100 (1998). https://doi.org/10.1023/A:1003496815969

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1003496815969

Navigation