Skip to main content
Log in

Electrochemical deposition of zinc–polystyrene composites in the presence of surfactants

  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The electrochemical codeposition of polystyrene particles and zinc on a rotating cylinder electrode was investigated. Rheological measurements indicate strong aggregation of the PS particles in the zinc deposition electrolyte. Addition of cetylpyridinium chloride, a cationic surfactant, prevents aggregation and enhances polystyrene codeposition. Other surfactants also increase suspension stability, but diminish polystyrene codeposition, irrespective of their charge. Hence, the surfactant charge does not affect polystyrene codeposition. The variation of polystyrene incorporation with the amount of suspended polystyrene, current density and electrode rotation speed signifies that polystyrene codeposition with zinc is determined by the competition between particle removal forces and particle adhesion forces at the cathode surface. The effect of the surfactants can be related to changes in surface roughness of zinc due to surfactant adsorbed on the electrode. Cetylpyridinium chloride behaves differently from the other surfactants, because it is reduced at the cathode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. R. Roos, J. P. Celis, J. Fransaer and C. Buelens, J. Metals 42 (1990) 60.

    Google Scholar 

  2. A. Hovestad and L. J. J. Janssen, J. Appl. Electrochem. 25 (1995) 519.

    Google Scholar 

  3. K. Helle, Report AKZO Research, Arnhem (1993).

  4. K. Helle, Proceedings, 4th International Conference on 'Organic Coating Science and Technology', Athens (1978), p. 264.

  5. P. K. N. Bartlett, Industrial training report AKZO, Arnhem (1980), pp. 10-39.

  6. G. Tuin, A. C. I. A. Peters, A. J. G. van Diemen and H. N. Stein, J. Colloid Interface Sci. 158 (1993) 508.

    Google Scholar 

  7. J. Laven, F. J. Huisman, L. J. Lalieu and H. N. Stein, Colloids and Surfaces 31 (1988) 385.

    Google Scholar 

  8. H. A. Barnes, J. F. Hutton and K. Walters, 'An Introduction to Rheology' (Elsevier Science, Amsterdam, 1989), pp. 115-39.

    Google Scholar 

  9. A. Hovestad, PhD thesis, Eindhoven University of Technology (1997).

  10. S. H. Maron, M. E. Elder and M. E. Ulevitch, J. Colloid Interface Sci. 9 (1954) 89.

    Google Scholar 

  11. S. H. Maron, M. E. Elder and M. E. Ulevitch, J. Colloid Interface Sci. 9 (1954) 104.

    Google Scholar 

  12. K. J. Abbey, J. R. Erickson, R. J. Seidewand, J. Colloid Interface Sci. 66 (1978) 203.

    Google Scholar 

  13. P. Conner, R. H. Ottewill, S., J. Colloid Interface Sci. 37 (1971) 642.

    Google Scholar 

  14. G. Tuin and H. N. Stein, Langmuir 10 (1994) 1054.

    Google Scholar 

  15. J. Zhao and W. Brown, Langmuir 11 (1995) 2944.

    Google Scholar 

  16. A. van den Boomgaard, PhD thesis, Agriculture University of Wageningen (1985).

  17. J. Bressan and R. Wiart, J. Appl. Electrochem. 9 (1979) 43.

    Google Scholar 

  18. I. Epelboin, M. Ksouri and R. Wiart, J. Electrochem. Soc. 122 (1975) 1206.

    Google Scholar 

  19. D. R. Gabe, J. Appl. Electrochem. 13 (1983) 3.

    Google Scholar 

  20. R. C. Kerby, in 'Application of Polarization Measurements in the Control of Metal Deposition', Process Metallurgy 3, edited by I. H. Warren (Elsevier Science, Amsterdam, 1984), p. 111.

    Google Scholar 

  21. D. J. MacKinnon, J. M. Brannen and P. L. Fenn, J. Appl. Electrochem. 17 (1987) 1129.

    Google Scholar 

  22. J. N. Jovićević, D. M. Draźć and A. R. Despić, Electrochim. Acta 22 (1977) 589.

    Google Scholar 

  23. J. Fransaer, J. P. Celis and J. R. Roos, J. Electrochem. Soc. 139 (1992) 413.

    Google Scholar 

  24. J. Fransaer, PhD thesis, Catholic University of Leuven (1994).

  25. A. Pappa-Lousi, P. Nikitas and Ph. Andonoglou, Electrochim. Acta 39 (1994) 375.

    Google Scholar 

  26. P. Nikitas, A. Paapa-Louisi and S. Antoniou, J. Eletroanal. Chem. 367 (1994) 239.

    Google Scholar 

  27. L. N. Nekrasov, H. Almualla, T. N. Khomchenko, Yu. D. Smirnov and A. P. Tomilov, Russ. J. Electrochem. 30 (1994) 73.

    Google Scholar 

  28. A. J. Bard, 'Encyclopedia of Electrochemistry of the Elements', Vol. 5 (Marcel Dekker, New York, 1982), p. 1.

    Google Scholar 

  29. R. M. Pashley and J. N. Israelachvili, J. Colloid Interface Sci. 101 (1984) 511.

    Google Scholar 

  30. R. M. Pashley and J. N. Israelachvili, Colloids and Surfaces 2 (1981) 169.

    Google Scholar 

  31. D. J. MacKinnon and J. M. Brannen, J. Appl. Electrochem. 7 (1977) 451.

    Google Scholar 

  32. R. Sato, J. Electrochem. Soc. 106 (1959) 206.

    Google Scholar 

  33. C. Buelens, PhD thesis, Catholic University of Leuven (1984), pp. 169-83.

  34. P. R. Webb and N. L. Robertson, J. Electrochem. Soc. 141 (1994) 669.

    Google Scholar 

  35. C. Buelens, J. P. Celis and J. R. Roos, J. Appl. Electrochem. 13 (1983) 541.

    Google Scholar 

  36. B. Dobiáš, 'Coagulation and Flocculation', Surfactant Science Seies 47 )Marcel Dekker, New York, 1993).

    Google Scholar 

  37. C. H. Giles and D. Smith, J. Colloid Interface Sci. 47 (1974) 755.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hovestad, A., Heesen, R.J.C.H.L. & Janssen, L.J.J. Electrochemical deposition of zinc–polystyrene composites in the presence of surfactants. Journal of Applied Electrochemistry 29, 331–338 (1999). https://doi.org/10.1023/A:1003477000602

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1003477000602

Navigation