Journal of Applied Electrochemistry

, Volume 28, Issue 10, pp 1127–1136 | Cite as

Electrogenerative formation of ferric ions in a sulfur dioxide–sulfuric acid solution; Graphite catalysed sulfur dioxide oxidation

  • E. García
  • G. R. Dieckmann
  • S. H. Langer


The electrogenerative oxidation of ferrous ions in 3m sulfuric acid, containing sulfur dioxide and subsequent sulfur dioxide oxidation, were studied in connection with potential regenerable sulfur dioxide remediation processes. The presence of sulfur dioxide in the feed stream did not affect cell performance. Oxidation of sulfur dioxide in the electrogenerative reactor took place when high ferrous to ferric ion conversions were obtained. Low cost graphite and iron ions served as an effective mediating system for promoting electron transfer to sulfur dioxide in strong acid solutions. In contrast, the homogenous reaction between iron(iii) and sulfur dioxide is relatively slow. In a separate batch reactor, the heterogeneous iron(iii) and sulfur dioxide reaction was found to be graphite catalysed, accounting for sulfur dioxide conversion observed in the electrogenerative reactor. Ferrous ion presence should be minimized, because it inhibits the desired catalysed reaction.

ferrous inhibition mediated oxidation remediation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    P. A. Spiro, D. L. Jacob and J. A. Logan, J. Geochem. Res. 97 (1992) 6023.Google Scholar
  2. [2]
    J. Dignon, Atmos. Environ. 26A (1992) 1157.Google Scholar
  3. [3]
    A.-K. Hjalmarsson, in ICHEME Symposium Series 123, ‘Desulphurisation 2: Technologies and Strategies for Reducing Sulphur Emissions’ (1991), pp. 1–11.Google Scholar
  4. [4]
    M. Aurousseau, T. Hunger, A. Storck and F. Lapicque, Chem. Eng. Sci. 48 (1993) 541.Google Scholar
  5. [5]
    V. A. Golodov and L. V. Kashnikova, Uspekhi Khimii 57 (1988) 1796.Google Scholar
  6. [6]
    L. Pessel, US patents 4 091 075 (1978) and 4 284 608 (1981).Google Scholar
  7. [7]
    D. J. McHenry and J. Winnick, AICHE J. 40 (1994) 143.Google Scholar
  8. [8]
    J. C. Card, M. J. Foral and S. H. Langer, Environ. Sci. Technol. 22 (1988) 1499.Google Scholar
  9. [9]
    J. Lee, H. B. Darus and S. H. Langer, J. Appl. Electrochem. 23 (1993) 745.Google Scholar
  10. [10]
    P. W. T. Lu and R. L. Ammon, J. Electrochem. Soc. 127 (1980) 2610.Google Scholar
  11. [11]
    K. Wiesener, Electrochim. Acta 18 (1973) 185.Google Scholar
  12. [12]
    A. J. Appleby and B. Pichon, Int. J. Hydrogen Energy 5 (1980) 253.Google Scholar
  13. [13]
    I. P. Voroshilov, N. N. Nechiporenko and E. P. Voroshilova, Elecktrokhimiya 10 (1974) 1378.Google Scholar
  14. [14]
    N. A. Urisson, G. V. Shteinberg, M. R. Tarasevich, V. S. Bagotskii and N. M. Zagudaeval, ibid. 19 (1983) 275.Google Scholar
  15. [15]
    C. Brandt, I. Fábian and R. van Eldik, Inorg. Chem. 33 (1994) 687.Google Scholar
  16. [16]
    J. Kraft and R. van Eldik, ibid. 28 (1989) 2306.Google Scholar
  17. [17]
    F. F. Prinsloo, C. Brandt, V. Lepentsiotis, J. J. Pienaar and R. van Eldik, ibid. 36 (1997) 119.Google Scholar
  18. [18]
    A. Huss, P. K. Lim and C. A. Eckert, J. Phys. Chem. 86 (1982) 4224.Google Scholar
  19. [19]
    C. Brandt and R. van Eldik, Chem. Rev. 95 (1995) 119.Google Scholar
  20. [20]
    M. H. Conklin and M. R. Hoffmann, Environ. Sci. Technol. 22 (1988) 899.Google Scholar
  21. [21]
    T. Chmiellewski and W. A. Charewicz, Hydrometallurgy 12 (1984) 21.Google Scholar
  22. [22]
    J. M. Nzikou, M. Aurousseau and F. Lapicque, J. Appl. Electrochem. 25 (1995) 967.Google Scholar
  23. [23]
    D. E. Linn, S. D. Rumage and J. L. Grutsch, Int. J. Chem. Kinetics 25 (1993) 489.Google Scholar
  24. [24]
    S. E. Lyke and S. H. Langer, J. Electrochem. Soc. 138 (1991) 1682.Google Scholar
  25. [25]
    Idem, Sep. Technol. 2 (1992) 13.Google Scholar
  26. [26]
    G. W. Armstrong, in ‘Treatise on Analytical Chemistry Part IIA’ (edited by I. M. Kolthoff and P. J. Elving) Vol. 7, John Wiley & Sons, New York (1961), p. 73.Google Scholar
  27. [27]
    E. H. Swift and Butler, in ‘Quantitative Measurements and Chemical Equilibria’, W. H. Freeman & Co., San Francisco (1972) pp. 446–476.Google Scholar
  28. [28]
    F. A. Lowenheim, in ‘Encyclopedia of Industrial Chemical Analysis’ (edited by F. D. Snell and L. S. Ettre), Vol. 18, Interscience, New York (1973) p. 408.Google Scholar
  29. [29]
    Z. Marczenko, in ‘Separation and Spectrophotometric Determination of Elements’, Ellis Horwood, Chichester, England (1986) pp. 330–333.Google Scholar
  30. [30]
    B. W. Budesinsky, Analyst 102 (1977) 211.Google Scholar
  31. [31]
    R. Bastian, R. Weberling and F. Palilla, Analytical Chem. 25 (1953) 284.Google Scholar
  32. [32]
    Spiro, M., in ‘Comprehensive Chemical Kinetics: Reactions at the Liquid-Solid Interface’, (edited by R. G. Compton), Vol. 28, Elsevier, Amsterdam (1989), pp 69–166.Google Scholar
  33. [33]
    Spiro, M., Catalysis Today 17 (1993) 517.Google Scholar
  34. [34]
    J. M. Austin, T. Groenewald and M. Spiro, J. Chem. Soc., Dalton Trans. (1980) 854.Google Scholar
  35. [35]
    J. M. Lancaster and R. S. Murray, J. Chem. Soc. (A) (1971) 2755.Google Scholar
  36. [36]
    I. Grgic, V. Hudnik, M. Bizjak and J. Levec, Atmos. Environ. 27A (1993) 1409.Google Scholar
  37. [37]
    A. Kotronarou and L. Sigg, Environ. Sci. Technol. 27 (1993) 2725.Google Scholar
  38. [38]
    S. G. Chang, R. Toossi, R. and T. Novakov, Atmos. Environ. 15 (1981) 1287.Google Scholar

Copyright information

© Kluwer Academic Publishers 1998

Authors and Affiliations

  • E. García
    • 1
  • G. R. Dieckmann
    • 1
  • S. H. Langer
    • 1
  1. 1.Chemical Engineering DepartmentUniversity of Wisconsin-MadisonMadisonUSA

Personalised recommendations