Skip to main content
Log in

Factors influencing the distribution and abundance of diaptomid copepods in high-elevation lakes in the Pacific Northwest, USA

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

We investigated the impact of abiotic factors and trout density on distribution and abundance of diaptomid copepods in high-elevation lakes in North Cascades National Park Service Complex (NOCA), Washington, USA. The most common large diaptomid, D. kenai (mean length = 1.88 mm), was able to persist over a wide range of abiotic factors, but the small herbivorous diaptomid, D. tyrrelli (mean length = 1.18 mm), was restricted to shallow lakes (maximum depth < ≈ 10 m) with relatively high concentrations of total Kjeldahl nitrogen and total phosphorous. There was a significant negative relationship between the density of D. tyrrelli and the density of large diaptomids ( D. kenai and D. arcticus), which could imply interaction between large and small diaptomids. The abundance of large diaptomids was significantly lower in shallow lakes with high densities of reproducing trout (> 250 fish ha-1) than in fishless lakes, in deep lakes with reproducing trout, or in lakes where trout do not reproduce and are 0periodically stocked with fry at low densities (average 179 fry a-1). In lakes where chemical conditions were suitable for D. tyrrelli, the small diaptomid was often abundant when trout density was high and large diaptomids were either absent or in low abundance. Our research suggests that trout density, nutrient concentration, and lake depth influence the abundance of diaptomid copepods in high lakes in NOCA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allan, J. D. & C. E. Goulden, 1980. Some aspects of reproductive variation among freshwater zooplankton. In W. C. Kerfoot (ed.), Evolution and Ecology and of Zooplankton Communities. The University Press of New England, Hanover (N.H.): 388–410.

    Google Scholar 

  • Anderson, J. D., 1967. A comparison of the life histories of coastal and mountain populations of Ambystoma macrodactylum in California. Am. Midl. Nat. 77: 323–354.

    Article  Google Scholar 

  • Anderson, R. S., 1970. Predator-prey relationships and predation rates for crustacean zooplankters from some lakes in western Canada. Can. J. Zool. 48: 1229–1240.

    Google Scholar 

  • Anderson, R. S., 1971. Crustacean plankton of 146 alpine and subalpine lakes and ponds in western Canada. J. Fish Res. Bd Can. 28: 311–321.

    Google Scholar 

  • Anderson, R. S., 1972. Zooplankton composition and change in an alpine lake. Int. Ver. Theor. Angew. Limnol. Verh. 17: 264–268.

    Google Scholar 

  • Anderson, R. S., 1974. Crustacean plankton communities of 340 lakes and ponds in and near the National Parks of the Canadian Rocky Mountains. J. Fish Res. Bd Can. 31: 855–869.

    Google Scholar 

  • Anderson, R. S., 1980. Relationships between trout and invertebrate species as predators and the structure of the crustacean and rotiferan plankton in mountain lakes. In W. C. Kerfoot (ed.), Evolution and Ecology of Zooplankton Communities. The University Press of New England, Hanover (N.H.): 635–641.

    Google Scholar 

  • Brocksen, R. W., G. E. Davis & C. E. Warren, 1970. Analysis of trophic processes on the basis of density-dependent functions. In J. H. Steele (ed.), Marine Food Chains. University of California Press, Berkeley (CA): 468–498.

    Google Scholar 

  • Butler, N. M., C. A. Suttle & W. E. Neill, 1989. Discrimination by freshwater zooplankton between single algal cells differing in nutritional status. Oecologia 78: 368–372.

    Article  Google Scholar 

  • Byron, E. R., C. L. Folt & C. R. Goldman, 1984. Copepod and cladoceran success in an oligotrophic lake. J. Plankton Res. 6: 45–65.

    Google Scholar 

  • Carney, H. J., 1990. A general hypothesis for the strength of food web interactions in relation to trophic state. Int. Ver. Theor. Angew. Limnol. Verh. 24: 487–492.

    Google Scholar 

  • Carpenter, S. R., J. F. Kitchell & J. R. Hodgson, 1985. Cascading trophic interactions and lake productivity. Bioscience 35: 634–639.

    Article  Google Scholar 

  • DeMott, W. R., 1989. The role of competition in zooplankton succession. In U. Sommer (ed.), Plankton Ecology: Succession in Plankton Communities. Springer-Verlag, New York: 195–252.

    Google Scholar 

  • Dodson, S. I., 1970. Complementary feeding niches sustained by size-selective predation. Limnol. Oceanog. 15: 131–137.

    Google Scholar 

  • Dodson, S. I., 1974. Zooplankton competition and predation: an experimental test of the size-efficiency hypotheses. Ecology 55: 605–613.

    Article  Google Scholar 

  • Dodson, S. I., 1979. Body size patterns in Arctic and temperate zooplankton. Limnol. Oceanogr. 24: 940–949.

    Google Scholar 

  • Donald, D. B., R. S. Anderson & D. W. Mayhood, 1994. Coexistence of fish and large Hesperodiaptomus species (Crustacea: Calanoida) in subalpine and alpine lakes. Can. J. Zool. 72: 259–261.

    Google Scholar 

  • Fedorenko, A. Y., 1975a. Instar and species-specific diets in two species of Chaoborus. Limnol. Oceanogr. 20: 238–249.

    Google Scholar 

  • Fedorenko, A. Y., 1975b. Feeding characteristics and predation impact of Chaoborus (Diptera, Chaoboridae) larvae in a small lake. Limnol. Oceanogr. 20: 250–258.

    Google Scholar 

  • Giguere, L., 1979. An experimental test of Dodson's hypothesis that Ambystoma (a salamander) and Chaoborus (a phantom midge) have complementary feeding niches. Can. J. Zool. 57: 1091–1097.

    Google Scholar 

  • Gliwicz, Z. M. & A. Prejs, 1977. Can planktivorous fish keep in check planktonic crustacean populations? A test of sizeefficiency hypothesis in typical polish lakes. Ekol. pol. 25: 567–591.

    Google Scholar 

  • Gliwicz, M. Z. & J. Pijanowska, 1988. Effect of predation and resource depth distribution on vertical migration of zooplankton. Bull. mar. Sci. 43: 695–709.

    Google Scholar 

  • Gliwicz, M. Z. & J. Pijanowska, 1989. The role of predation in zooplankton succession. In U. Sommer (ed.), Plankton Ecology: Succession in Plankton Communities. Springer-Verlag, New York (NY): 253–296.

    Google Scholar 

  • Gresswell, R. E., W. J. Liss, G. Lomnicky, E. A. Deimling, R. L. Hoffman & T. Tyler, 1997. Estimation of trout density in small mountain lakes by mark-recapture. Northwest Sci. 71: 39–44.

    Google Scholar 

  • Hairston, N. G. Jr., 1978. Carotenoid photoprotection in Diaptomus kenai. Int. Ver. Theor. Angew. Limnol. Verh. 20: 241–254.

    Google Scholar 

  • Haney, J. F. & D. J. Hall, 1973. Sugar-coated Daphnia: A preservation technique for Cladocera. Limnol. Oceanogr. 18: 331–333.

    Google Scholar 

  • Hoffman, R. L., W. J. Liss, G. L. Larson, E. A. Deimling & G. A. Lomnicky, 1996. Distribution of nearshore macroinvertebrates in lakes of the Northern Cascade Mountains, Washington, USA. Arch. Hydrobiol. 136: 363–389.

    Google Scholar 

  • Jarvis, J., 1987. Natural lakes management and fish stocking report, North Cascades National Park Service Complex, 2105 Highway 20, Sedro Wooley, WA, 98284.

  • Kerfoot, W. C., 1987. Cascading effects and indirect pathways. In W. C. Kerfoot & A. Sih (eds), Predation: Direct and Indirect Impacts on Aquatic Communities. The University Press of New England, Hanover (N.H.): 57–70.

    Google Scholar 

  • Lambou, V. W., W. D. Taylor, S. C. Hern & L. R. Williams, 1983. Comparisons of trophic state measurements.Wat. Res. 17: 1619–1626.

    Article  CAS  Google Scholar 

  • Langeland, A., 1978. Effect of fish (Salvelinus alpinus, Arctic char) predation on the zooplankton in ten Norwegian lakes. Int. Ver. Theor. Angew. Limnol. Verh. 20: 2065–2069.

    Google Scholar 

  • Larson, G. L., A. Wones, C. D. McIntire & B. Samora, 1994. Integrating limnological characteristics of high mountain lakes into the landscape of a natural area. Envir. Manage. 18: 871–888.

    Article  Google Scholar 

  • Leavitt, P. R., D. E. Schindler, A. J. Paul, A. K. Hardie & D. W. Schindler, 1994. Fossil pigment records of phytoplankton in trout-stocked alpine lakes. Can. J. Fish. aquat. Sci. 51: 2411–2423.

    Article  CAS  Google Scholar 

  • Liss, W. J., G. L. Larson, E. A. Deimling, L. Ganio, R. Gresswell, R. Hoffman, M. Kiss, G. Lomnicky, C. D. McIntire, R. Truitt & T. Tyler, 1995. Ecological effects of stocked trout in naturally fishless high mountain lakes: North Cascades National Park Service Complex, WA., USA. Technical Report NPS/PNROSU/NRTR–95–03. National Park Service, Pacific Northwest Region, 909 First Avenue, Seattle, WA. 98104.

  • Maly, E. J., 1976. Resource overlap between co-occurring copepods: effects of predation and environmental fluctuation. Can. J. Zool. 54: 933–940.

    Google Scholar 

  • McQueen, D. J., J. R. Post & E. L. Mills, 1986. Trophic relationships in freshwater pelagic ecosystems. Can. J. Fish. aquat. Sci. 43: 1571–1581.

    Google Scholar 

  • Miller, R. G., 1981. Simultaneous Statistical Inference. Springer-Verlag, New York.

    Google Scholar 

  • Morin, P. J., 1987. Salamander predation, prey facilitation, and seasonal succession in microcrustacean communities. In W. C. Kerfoot & A. Sih (eds), Predation: Direct and Indirect Impacts on Aquatic Communities. The University Press of New England, Hanover (N.H.): 174–187.

    Google Scholar 

  • Neill, W. E., 1987. Complex interactions in oligotrophic lake food webs: responses to nutrient enrichment. In S. R. Carpenter (ed.), Complex Interactions in Lake Communities. Springer-Verlag, New York: 30–44.

    Google Scholar 

  • Northcote, T. G. & R. Clarotto, 1975. Limnetic macrozooplankton and fish predation in some coastal British Columbia lakes. Int. Ver. Theor. Angew. Limnol. Verh. 19: 2378–2393.

    Google Scholar 

  • Northcote, T. G., C. J. Walters & J. M. B. Hume, 1978. Initial impacts of experimental fish introductions on the macrozooplankton of small oligotrophic lakes. Int. Ver. Theor. Angew. Limnol. Verh. 20: 2003–2012.

    Google Scholar 

  • Olenick, R. J., 1983. The effects of interspecific competition on Diaptomus leptopus in a montane lake: an experimental field study. Can. J. Zool. 61: 2273–2287.

    Google Scholar 

  • Patalas, K., 1964. The crustacean plankton communities in 52 lakes of different altitudinal zones of northern Colorado. Int. Ver. Theor. Angew. Limnol. Verh. 15: 719–726.

    Google Scholar 

  • Paloheimo, J. E. & R. R. Fulthorpe, 1987. Factors influencing plankton community structure and production in freshwater lakes. Can. J. Fish. aquat. Sci. 44: 650–657.

    Google Scholar 

  • Paul, A. J., P. R. Leavitt, D. W. Schindler & A. K. Hardie, 1995. Direct and indirect effects of predation by a calanoid copepod (subgenus: Hesperodiaptomus) and nutrients in a fishless alpine lake. Can. J. Fish. aquat. Sci. 52: 2628–2638.

    Article  Google Scholar 

  • Post, J. R. & D. J. McQueen, 1987. The impact of planktivorous fish on the structure of a plankton community. Freshwat. Biol. 17: 79–89.

    Article  Google Scholar 

  • Reed, E. G. & J. R. Olive, 1958. Altitudinal distribution of some entomostraca in Colorado. Ecology 39: 66–74.

    Article  Google Scholar 

  • Ricker, W. E., 1975. Computation and Interpretation of Biological Statistics of Fish Populations. Department of Environment, Fisheries and Marine Service, Fish. Res. Bd Can. Bull. 191, Ottawa, Canada.

    Google Scholar 

  • Sprules, W. G., 1972. Effects of size-selective predation and food competition on high altitude zooplankton communities. Ecology 53: 375–386.

    Article  Google Scholar 

  • Sprules, W. G., 1975. Midsummer zooplankton communities in acid-stressed lakes. J. Fish Res. Bd Can. 32: 389–395.

    Google Scholar 

  • Starkweather, P. L., 1990. Zooplankton community structure of high elevation lakes: biogeographic and predator-prey interactions. Int. Ver. Theor. Angew. Limnol. Verh. 24: 513–517.

    Google Scholar 

  • Stenson, J. A. E., 1972. Fish predation effects on species composition of the zooplankton community in eight small forest lakes. Rep. Inst. Freshwater Res. (Drottningholm) 52: 132–148.

    Google Scholar 

  • Stich, H. B. & W. Lampert, 1981. Predation evasion as an explanation of diurnal vertical migration by zooplankton. Nature 293: 396–398.

    Article  Google Scholar 

  • Stoddard, J. L., 1987. Microcrustacean communities of highelevation lakes in the Sierra Nevada, California. J. Plankton Res. 9: 631–650.

    Google Scholar 

  • Tyler, T.,W. J. Liss, L. Ganio, G. L. Larson, R. L. Hoffman, G. Lomnicky & E. A. Deimling, 1998. Interactions between introduced trout and larval salamanders (Ambystoma macrodactylum) in high-elevation lakes. Cons. Biol. 12: 94–105.

    Article  Google Scholar 

  • Walters, C. J., E. Krause, W. E. Neill & T. G. Northcote, 1987. Equilibrium models for seasonal dynamics of plankton biomass in four oligotrophic lakes. Can. J. Fish. aquat. Sci. 44: 1002–1017.

    Google Scholar 

  • Williamson, C. E., 1987. Predator-prey interactions between omnivorous diaptomid copepods and rotifers: The role of prey morphology and behavior. Limnol. Oceanogr. 32: 167–177.

    Google Scholar 

  • Williamson, C. E. & N. M. Butler, 1986. Predation on rotifers by the suspension-feeding calanoid copepod Diaptomus pallidus. Limnol. Oceanogr. 31: 393–402.

    Article  Google Scholar 

  • Zaret, T. M. & J. S. Suffern, 1976. Vertical migration in zooplankton as a predator-avoidance mechanism. Limnol. Oceanogr. 21: 804–813.

    Google Scholar 

  • Zaret, T. M., 1980. Predation and Freshwater Communities. Yale University Press, New Haven. (Reprinted in 1990 by University Microfilms International, Ann Arbor, MI).

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liss, W.J., Larson, G.L., Deimling, E.A. et al. Factors influencing the distribution and abundance of diaptomid copepods in high-elevation lakes in the Pacific Northwest, USA. Hydrobiologia 379, 63–75 (1998). https://doi.org/10.1023/A:1003453611464

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1003453611464

Navigation