Journal of Applied Electrochemistry

, Volume 28, Issue 10, pp 1121–1125 | Cite as

Reduction of nitrogen monoxide to nitrogen at gas diffusion electrodes with noble metal catalysts

  • M. Shibata
  • K. Murase
  • N. Furuya


The electrochemical reduction of NO in alkaline solutions was investigated at gas diffusion electrodes with various metal (Ru, Rh, lr, Pd and Pt) catalysts at various NO flow rates. Reduction currents are observed at potentials more negative than 0.95 V, which increase with the decrease in potential and also with increasing gas flow rate. The faradaic efficiencies of N2O formation decrease with decreasing NO flow rate and with decrease in potential. The faradaic efficiencies of N2 formation increase with decreasing flow rate and with decrease in potential. The reduction of NO to N2 at a flow rate of 5mlmin−1 occurs selectively at potentials more negative than 0.1V; the faradaic efficiency of N2 formation is approximately 95 at Pd catalysts.

Electricity production and NO decomposition can be carried out simultaneously using an H2NO fuel cell reactor. The faradaic efficiency of N2 formation at a flow rate of 5mlmin−1 is approximately 80 at a cell voltage of 0.25 V.

fuel cell gas diffusion electrodes noble metal catalysts NO reduction 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    D. Lorimer and A.T. Bell, J. Catal. 59 (1979) 223.Google Scholar
  2. [2]
    M. L. Unland, ibid. 31 (1973) 159.Google Scholar
  3. [3]
    H. Arai and H. Tominaga, ibid. 43 (1976) 131.Google Scholar
  4. [4]
    R. Dictor, ibid. 109 (1988) 89.Google Scholar
  5. [5]
    E. A. Hyde, R. Rudham and C. H. Rochester, J. Chem., Faraday Trans. 86 (1984) 531.Google Scholar
  6. [6]
    K. Tomishige, K. Asakura and Y. Iwasawa, J. Chem. Soc., Chem Commun. (1993) 184.Google Scholar
  7. [7]
    R. M. Lambert and C. M. Comrie, Surf. Sci. 46 (1974) 61.Google Scholar
  8. [8]
    R. D. Ramsier, Q. Gao, H. N. Waltenburg and K. W. Lee, O. W. Nooij, L. Lefferts and J. T. Yates, Jr., ibid. 320 (1994) 209.Google Scholar
  9. [9]
    T. W. Root, L. D. Schmidt and G. B. Fisher, ibid. 134 (1983) 30.Google Scholar
  10. [10]
    L. J. J. Janssen, Electrochim. Acta 21 (1976) 811.Google Scholar
  11. [11]
    M. J. Foral and S. H. Langer, ibid. 33 (1988) 257.Google Scholar
  12. [12]
    D. Dutta and D. Landolt, J. Electrochem. Soc. 199 (1972) 1320.Google Scholar
  13. [13]
    L. J. J. Janssen, M. M. J. Pieterse and E. Barendrecht, Electrochim. Acta 22 (1977) 27.Google Scholar
  14. [14]
    D. L. Ehman and D. T. Sawyer, J. Electroanal. Chem. 16 (1974) 541.Google Scholar
  15. [15]
    H. Ebert, R. Parsons, G. Ritzoulis and T. VanderNoot, ibid. 264 (1989) 181.Google Scholar
  16. [16]
    K. E. Johnson and D. T. Sawyer, ibid. 49 (1974) 95.Google Scholar
  17. [17]
    N. Furuya and H. Yoshiba, ibid. 303 (1989) 271.Google Scholar
  18. [18]
    M. Shibata, K. Murase and N. Furuya, Denki Kagaku, 66 (1998) 811.Google Scholar
  19. [19]
    N. Konishi, K. Hara, A. Kudo and T. Sakata, Bull. Chem. Soc. Jpn. 69 (1996) 2159.Google Scholar
  20. [20]
    M. Watanabe, S. Motoo and N. Furuya, US Patent 4 931 168 (1990).Google Scholar

Copyright information

© Kluwer Academic Publishers 1998

Authors and Affiliations

  • M. Shibata
    • 1
  • K. Murase
    • 1
  • N. Furuya
    • 1
  1. 1.Department of Applied Chemistry, Faculty of EngineeringYamanashi UniversityKofuJapan

Personalised recommendations