Advertisement

Journal of Applied Electrochemistry

, Volume 28, Issue 10, pp 1107–1112 | Cite as

Effect of brighteners on hydrogen evolution during zinc electroplating from zincate electrolytes

  • M. Monev
  • L. Mirkova
  • I. Krastev
  • Hr. Tsvetkova
  • St. Rashkov
  • W. Richtering
Article

Abstract

Hydrogen evolution during zinc electrodeposition on a steel substrate from zincate electrolytes containing different additives was studied using various experimental techniques.The hydrogen evolution reaction is limited by the electron transfer step. Hydrogen evolution is most intensive during the first seconds from the beginning of electrodeposition due to the lower overpotential of hydrogen on steel as compared with that on zinc. The evolved hydrogen is dissipated in three ways. Most is dissipated to the atmosphere via gas bubbles at a constant rate. Some is dispersed in the electrolyte some diffuses into the steel substrate, predominantly at the commencement of deposition. The additives affect both the total amount of evolved hydrogen and its distribution. The highest amount of hydrogen is evolved in the presence of the anisaldehyde bisulphite containing composite additive. The highest amount of hydrogen included in the substrate and remaining in the electrolyte corresponds to the use of the Na–N-benzylnicotinate containing additive. In this case blistering is observed.

zinc deposition hydrogen evolution brighteners zincate electrolyte 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    W. Jelinek, ‘Galvanisches Verzinken’, Eugen G. Leuze Verlag, Saulgau/Württ. (1982).Google Scholar
  2. [2]
    M. Beloglazov, Navodorajivanie stali pri elektrohimicheskih procesah, Izd. Leningradskogo universiteta, Leningrad (1975).Google Scholar
  3. [3]
    W. Paatsch, Metalloberfläche 32 (1978) 546.Google Scholar
  4. [4]
    ‘Galvanische Verzinkung + Chromatierung + Versiegelung’, Bericht über eine Fachtagung am 5. Dezember 1985 in Nürnberg, Galvanotechnik 77 (1986) 597.Google Scholar
  5. [5]
    G. Strube, Galvanotechnik, 77 (1986) 1318.Google Scholar
  6. [6]
    A. N. Frumkin, L. N. Nekrassov, B. G. Levich and Su. B. Ivanov, J. Electroanal. Chem. 1 (1959) 84.Google Scholar
  7. [7]
    V. G. Levich, ‘Fisiko-himitcheskaya gidrodynamika’, Fiz. matgiz., Moskva (1959).Google Scholar
  8. [8]
    L. Mirkova, Ch. Tsvetkova, I. Krastev, M. Monev and S. Rashkov, Trans. I. M. F. 73 (1995) 44.Google Scholar
  9. [9]
    M. A. Devanathan and Z. Stachurski, J. Electrochem. Soc. 111 (1964) 619.Google Scholar
  10. [10]
    V. N. Kudryavtsev, Itogi nauki I techniki, Elektrochimya 8 (1972) 156.Google Scholar
  11. [11]
    L. Mirkova, M. Monev, I. Krastev and St. Rashkov, Trans. I.M.F. 73 (1995) 107Google Scholar
  12. [12]
    W. Paatsch, Galvanotechnik 70 (1979) 706.Google Scholar

Copyright information

© Kluwer Academic Publishers 1998

Authors and Affiliations

  • M. Monev
    • 1
  • L. Mirkova
    • 1
  • I. Krastev
    • 1
  • Hr. Tsvetkova
    • 1
  • St. Rashkov
    • 1
  • W. Richtering
    • 2
  1. 1.Institute of Physical ChemistryBulgarian Academy of SciencesSofiaBulgaria
  2. 2.Atotech Deutschland GmbHBerlinGermany

Personalised recommendations