Skip to main content
Log in

Responses of benthic community metabolism to abiotic factors in a mountain river in southern Poland

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Seasonal and longitudinal metabolic trends in benthic communities were studied in the five orders of a natural mountain river (the Stradomka) in southern Poland. The method of oxygen change of rocky substrata in chambers was applied. Metabolic data were compared with abiotic (light regime, channel geomorphology and stream hydrology), and water chemical variables. A tendency of downstream increase in gross production and community respiration was observed between 1st and 4th stream orders. The highest values of GP (0.94 g C m-2 24 h -1) and CR (1.12 g C m-2 24 h -1) were observed in the middle Stradomka course (3–4 orders) in spring. A distinct negative NDM (heterotrophy) of the benthic community was measured in autumn and spring. During winter NDM was almost constant and oscillated around zero. The P/R ratio changed according to season and fluctuated between heterotrophy (P/R < 1) and autotrophy (P/R > 1). In general, heterotrophy prevailed in the study system (except 5th order). A marked shift in P/R between 4th and 5th stream orders confirms the prediction included in the RCC. Water temperature and PAR accounted for 56% in GP variability, whereas CR and NDM were not related to these variables. The combined variables (PAR and PO4–P) attributed to 69% in GP variability. The set of chemical factors was less related to Stradomka metabolic data. These results suggest that metabolic processes in this mountain river remarkably depend on physical variables (solar radiation, altitude, water temperature and conductivity). Metabolic parameters were similar to other geographical mountain systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • American Public Health Association, 1985. Standard Methods for the Examination of Water and Wastewater, 16th edn. APHA, Washington.

    Google Scholar 

  • Anderson, T. W., 1958. An Introduction to Multivariate Statistical Aanalysis. Wiley, New York.

    Google Scholar 

  • Bombówna, M., 1969. Hydro-chemical characteristics of the River Raba and its tributaries (in Polish) [Hydrochemiczna charakterystykarzeki Raby i jej dopływów]. Acta hydrobiol. 11: 479–504.

    Google Scholar 

  • Bombówna, M., 1972. Primary production of montane river. In Z. Kajak & A. Hillbricht-Ilkowska (eds), Proc. IBP-UNESCO Symposium on Productivity Problems in Freshwaters, Kazimierz Dolny, 1970. Polish Scientific Publications, Warsaw and Cracow: 661–671.

    Google Scholar 

  • Bott, T. L., J. T. Brock, C. S. Dunn, R. J. Naiman, R.W. Ovink, R. C. Petersen, 1985. Benthic community metabolism in four temperate stream systems: An inter-biome comparison and evaluation of the river continuum concept. Hydrobiologia 123: 3–45.

    Article  Google Scholar 

  • Bott, T. L., 1983. Primary productivity in streams. In J. Barnes & G. W. Minshall (eds), Stream Ecology: Application and Testing of General Ecological Theory. Plenum Press, New York, 29–54.

    Google Scholar 

  • Bott, T. L., Brock, C. E. Cushing, C. V., Gregory, D. King & R. C. Petersen, 1978. A comparison of methods for measuring primary productivity and community respiration in streams. Hydrobiologia 60: 3–12.

    Article  CAS  Google Scholar 

  • Cushing, C.E. & E. G. Wolf, 1982. Organic energy budget of Rattlesnake Springs, Washington. Am. Midl. Nat. 107: 404–407.

    Article  Google Scholar 

  • Cushing, C. E., C. D. McIntire, K.W. Cummins, G.W. Minshall, R. C. Petersen, J. R. Sedell & R. L. Vannote, 1983. Relationships among chemical, physical, and biological indices along river continua based on multivariate analyses. Arch. Hydrobiol. 98: 317–326.

    CAS  Google Scholar 

  • Cushing, C. E., K. W. Cummins & G. W. Minshall, 1995. River and stream ecosystems. Ecosystems of the World: 22. Elsevier, Amsterdam, Lausanne, New York, Oxford, Shannon, Tokyo, 817 pp.

    Google Scholar 

  • Duncan, W. F. A. & M. A. Brusven, 1985. Energy dynamics of the three low order southeastern Alaskan streams: autochthonous production. J. Freshwat. Ecol. 3: 155–165.

    CAS  Google Scholar 

  • Elwood, J. W. & D. J. Nelson, 1972. Periphyton production and grazing rates in stream measured with 32P material balance method. Oikos 23: 295–303.

    Google Scholar 

  • Fisher, S. G., 1977. Organic matter processing by a streamsegment ecosystem: Fort River, Massachusetts, U.S.A. Int. Rev. ges. Hydrobiol. 62: 701–727.

    Google Scholar 

  • Fisher, S. G. & G. E. Likens, 1973. Energy flow in Bear Brook, New Hampshire: An integrative approach to stream ecosystem metabolism. Ecol. Monogr. 43: 421–439.

    Article  Google Scholar 

  • Fleituch, T., 1996. In doctoral theses: Structure and functioning of bottom fauna in the River Stradomka Continuum (in Polish) [Struktura i funkcjonowanie fauny dennej w kontinuum rzecznym Stradomki]. Dept. Appl. Ecol., Univ. Lodz, 149 pp.

  • Flemer, D. A., 1970. Primary productivity of the North Branch of the Raritan River, New Jersey. Hydrobiologia 35: 273–296.

    Article  Google Scholar 

  • Gregory, S. V., F. J. Swanson W. A. McKee, & K. W. Cummins, 1991. An ecosystem perspective of riparian zones. Focus on links between land and water. BioScience 41: 540–551.

    Article  Google Scholar 

  • Hermanowicz, W., W. Dro/.zañska, J. Dojlido & B. Koziorowski, 1976. Physico-chemical analyses of water and wastewater (in Polish) [Fizyko-chemiczne badania wody i œcieków]. Warszawa, Arkady, 847 pp.

    Google Scholar 

  • Hickman, M., 1974. The standing crop and primary productivity of the epiphyron attached to Chiloscyphys polyanthus (L.) Chorda b rivularis (Schrad.) Nees in a spring fed stream. Arch. Hydrobiol. 73: 464–469.

    Google Scholar 

  • Hynes, H. B. N., 1970. The Ecology of Running Waters. University of Toronto Press, Toronto.

    Google Scholar 

  • Marker, A. F. H., 1976. The benthic algae of some streams in southern England. II The primary production of the epilithon in a small chalk-stream. J. Ecol. 64: 359–373.

    Article  CAS  Google Scholar 

  • McDowell, W. H. & G. E. Likens, 1988. Origin, composition, and flux of dissolved organic carbon in the Hubbard Broock Valley. Ecol. Monogr. 58: 177–195.

    Article  Google Scholar 

  • McIntire, C. D. & H. K. Phinney, 1965. Laboratory studies of periphyton production and community metabolism in lotic environments. Ecol. Monogr. 35: 237–256.

    Article  Google Scholar 

  • McIntire, C. D. & J. A. Colby, 1978. A hierarchical model of lotic ecosystems. Ecol. Monogr. 48: 167–190.

    Article  Google Scholar 

  • Meyer, J. L., 1989. Can P/R ratio be used to asses the food base of stream ecosystem? A comment on Rosenfeld and Mackay (1987). Oikos 54: 119–121.

    Google Scholar 

  • Minshall, G. W., 1978. Autotrophy in streams. BioSciences 28: 767–771.

    Article  Google Scholar 

  • Minshall, G. W., J. T. Brock & T. W. LaPoint, 1982. Characterization and dynamics of benthic organic matter and invertebrate functional feeding group relationships in the Upper Salmon River, Idaho (USA). Int. Revue ges. Hydrobiol. 67: 793–820.

    Google Scholar 

  • Minshall, G. W., R. C. Petersen, K. W. Cummins, T. L. Bott, J. R. Sedell, C. E. Cushing & R. L. Vannote, 1983. Interbiome comparison of stream ecosystem dynamics. Ecol. Monogr. 53: 1–25.

    Article  Google Scholar 

  • Molla, S., L. Maltchik, C. Casado & C. Montes, 1996. Particulate organic matter and ecosystem metabolism dynamics in a temporary Mediterranean stream. Arch. Hydrobiol. 137: 59–76.

    CAS  Google Scholar 

  • Naiman, R. J., 1976. Primary production, standing stock, and export of organic matter in a Mohave Desert thermal stream. Limnol. Oceanogr. 21: 60–73.

    CAS  Google Scholar 

  • Naiman, R. J., 1983. The annual pattern and spatial distribution of aquatic oxygen metabolism in boreal forest watershed. Ecol. Monogr. 53: 73–94.

    Article  Google Scholar 

  • Naiman, R. J.& J. R. Sedell, 1980. Relationships between metabolic parameters and stream order in Oregon. Can. J. Fish. aquat. Sci. 37: 834–847.

    Google Scholar 

  • Naimo, T. J., J. B. Layzer & A. C. Miller, 1988. Benthic community metabolism in two northern Mississippi Streams. J. Freshwat. Ecol. 4: 503–515.

    CAS  Google Scholar 

  • Pfeifer, R. F. & W. F. McDiffett, 1975. Some factors affecting primary productivity of stream riffle communities. Arch. Hydrobiol. 75: 306–317.

    Google Scholar 

  • Punzet, J., 1969. Hydrological characteristics of the River Raba (in Polish) [Charakterystyka hydrologiczna rzeki Raby]. Acta hydrobiol. 31: 423–477.

    Google Scholar 

  • Rosenfeld, J. S. & R. J. Mackay, 1987. Assessing the food base of stream ecosystems: alternatives to the P/R ratio. Oikos 50: 141–147.

    Google Scholar 

  • Servais, P., E. Debecker & G. Billen, 1984. Annual cycle of gross primary production and respiration in the Viroin River, Belgium. Hydrobiologia 111: 57–63.

    CAS  Google Scholar 

  • Stockner, J. G., 1968. Algal growth and primary productivity in a thermal stream. J. Fish. Res. Bd. Can. 25: 2037–2058.

    Google Scholar 

  • Strahler, H. N., 1957. Qauntitative analysis of watershed geomorphology. Am. geophys. Union Trans. 33: 913–920.

    Google Scholar 

  • Sumner, W. T. & S. G. Fisher, 1979. Periphyton production in Forest River, Massachusetts. Freshwat. Biol. 9: 205–212.

    Article  Google Scholar 

  • Taylor, B. R. & J. C. Rolf, 1982. Evaluation of ecological maturity in three headwater streams. Arch. Hydrobiol. 94: 99–125.

    CAS  Google Scholar 

  • Thomas, N. A. & R. L. O';Connell, 1966. A method for measuring primary production by stream benthos. Limnol. Oceanogr. 11: 386–392.

    Article  Google Scholar 

  • Tominaga, K. & S. Ichimura, 1966. Ecological studies on the organic matter production in a mountain river. Bot. mag., Tokyo 79: 815–829.

    CAS  Google Scholar 

  • Towpasz, K., 1974. Vascular plants of south-eastern part of the Beskid Wyspowy Mountains (in Polish) [Roœliny naczyniowe południowo-wschodniej czêœci Beskidu Wyspowego]. Monogr. Bot. 46: 1–111.

    Google Scholar 

  • Vannote, R. L., 1981. The River Continuum: A theoretical construct for the analysis of river ecosystems. In R. D. Cross & D. L. Williams (eds), Proc. Natn. Symp. Freshwat. Inflow to estuaries, V.2: Fish & Wildlife Serv., U.S. Dept. Interior, Washington: 209–304.

    Google Scholar 

  • Vannote, R. L., G. W. Minshall, K. W. Cummins, J. R. Sedell & C. E. Cushing., 1980. The River Continuum Concept. Can. J. Fish. aquat. Sci. 37: 130–137.

    Article  Google Scholar 

  • Webster, J. R., J. B. Wallace & E. F. Benfield, 1995. Organic processes in streams of the eastern United States. In: C. E. Cushing, K. W. Cummins & G. W. Minshall (eds), River and Stream Ecosystems. Ecosystems of the World: 22. Elsevier, Amsterdam, Lausanne, New York, Oxford, Shannon, Tokyo: 117–187.

    Google Scholar 

  • Wetzel, R. G. & G. E. Likens, 1991. Limnological Analyses, 2nd edn. Springer Verlag Inc., New York, 391 pp.

    Google Scholar 

  • Wright, J. F., P. D. Armitage & M. T. Furse. 1989. Prediction of invertebrate communities using stream measurements. Regulated rivers: Research and Management 4: 147–155.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fleituch, T. Responses of benthic community metabolism to abiotic factors in a mountain river in southern Poland. Hydrobiologia 380, 27–41 (1998). https://doi.org/10.1023/A:1003428903329

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1003428903329

Navigation