Skip to main content
Log in

Algal respiration and the regulation of phytoplankton biomass in a polymictic tropical lake (Lake Xolotlán, Nicaragua)

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Community respiration in tropical Lake Xolotlán, Nicaragua, was assessed seasonally and during diurnal cycles, via oxygen consumption in bottle enclosures. Results were analysed in relation to phytoplankton biomass, mixing depth, depth of photic zone and phytoplankton production. A great part of community respiration was associated with the heterotrophic activity of the phytoplankton biomass or its degradation by bacteria and 80% of the variability in oxygen consumption was explained by the variation of chlorophyll-a. Specific rate of respiration was 1.5 mg O2 mg Chla-1 h-1 during diurnal cycles, which corresponded to less than 5% of the specific rate at optimum depth of production. Still, diurnal water column respiratory losses were always of the same magnitude as the total photosynthetic gains in the photic zone, since the mixing depth exceeded the depth of the photic zone. Total column net growth was zero at a ratio between depth of photic zone and mixing depth of 0.19. Water level variations however altered the mixing depth and affected this ratio and net growth. As a consequence, the phytoplankton biomass either increased or decreased until the ratio was re-established through changes of the photic zone depth, which was governed by the phytoplankton biomass itself through the chlorophyll-a light attenuation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahlgren, I., C. Chacón, R. García, I. Mairena, K. Rivas & A. Zelaya, 1997. Sediment microbial activity in temperate and tropical lakes, a comparison between Swedish and Nicaragua lakes. Verh. int. Ver. Limnol. 26: 429–434.

    Google Scholar 

  • Alpine, A. E. & J. E. Cloern, 1988. Phytoplankton growth rates in light-limited environments, San Fransisco Bay. Mar. Ecol. Prog.

  • Bannister, T. T., 1974. A general theory of steady state phytoplankton growth in nutrient-saturated mixed layer. Limnol. Oceanogr. 19: 13–30.

    Google Scholar 

  • Cloern, L. E., 1987. Turbidity as a control on phytoplankton biomass and productivity in estuaries. Cont. Shelf Res. 7: 1367–1381.

    Article  Google Scholar 

  • Cole, J. J., N. F. Caraco & B. L. Peierls, 1992. Can phytoplankton maintain a positive carbon balance in turbid, freshwater, tidalestuary? Limnol. Oceanogr. 37: 1608–1617.

    Article  CAS  Google Scholar 

  • Erikson, R., E. Hooker & M. Mejia, 1991. Underwater light penetration, phytoplankton biomass and photosynthetic activity in Lake Xolotlán. Hydrobiol. Bull. 25: 137–144.

    Article  CAS  Google Scholar 

  • Erikson, R., M. Pum, K. Vammen, A. Cruz, M. Ruiz & H. Zamora, 1997. Nutrient availability and the stability of phytoplankton biomass and production in Lake Xolotlán (Nicaragua). Limnologica 27: 157–164.

    CAS  Google Scholar 

  • Erikson, R., E. Hooker, M. Mejia, A. Zelaya & K. Vammen, 1998a. Optimal conditions for primary production in a polymictic tropical lake (Lake Xolotlán, Nicaragua). Hydrobiologia 382: 1–16.

    Article  CAS  Google Scholar 

  • Erikson, R., K. Vammen, A. Zelaya & R. T. Bell, 1998b. Distribution and dynamics of bacterioplankton production in a polymictic tropical lake (Lake Xolotlán, Nicaragua). Hydrobiologia 382: 27–39.

    Article  Google Scholar 

  • Foy, R. H., C. E. Gibson & R. V. Smith, 1976. The influence of day length, light intensity and temperature on the growth rate of planktonic blue-green algae. Br. phycol. J. 11: 151–163.

    Google Scholar 

  • Fuente, J. L., 1986. Red solar y la estación Vadstena, Nicaragua. Reporte Técnico-Investigativo No 04/86, UCA, Managua.

    Google Scholar 

  • Ganf, G. G., 1974. Rates of oxygen uptake by planktonic community of a shallow equatorial lake (Lake George, Uganda). Oecologia (Berl.) 15: 17–34.

    Article  Google Scholar 

  • Ganf, G. G. & A. B. Viner, 1973. Ecological stability in a shallow equatorial lake (Lake George, Uganda). Proc. r. Soc. Lond. B. 184: 321–346.

    Article  Google Scholar 

  • Grobbelaar, J. U., 1985. Phytoplankton productivity in turbid waters. J. Plankton Res. 5: 653–663.

    Google Scholar 

  • Harris, G. P., 1973. Diel and annual cycles of net plankton photosynthesis in Lake Ontario. J. Fish. Res. Bd Can. 30: 1779–1787.

    Google Scholar 

  • Harris, G. P., 1978. Photosynthesis, production and growth: The physiological ecology of phytoplankton. Ergebn. Limnol. 10: 1–171.

    Google Scholar 

  • Hooker, E. & S. Hernandez, 1991. Phytoplankton biomass in Lake Xolotlán (Managua): Its seasonal and horizontal distribution. Hydrobiol. Bull. 25: 125–131.

    Article  Google Scholar 

  • IRENA, 1982. Informica basica sobre el Lago de Managua (Xolotlán): Tallér international de salvamento y aprovechamiento integral del Lagode Managua. IRENA, Managua.

  • Jensen, M. L., K. Sand-Jensen, S. Marcher & M. Hansen, 1990. Plankton community respiration along a nutrient gradient in a shallow Danish estuary. Mar. Ecol. Prog. Ser. 61: 75–85.

    Google Scholar 

  • Lacayo, M., 1991. Physical and chemical features of Lake Xolotlán (Managua). Hydrobiol. Bull. 25: 111–116.

    Article  CAS  Google Scholar 

  • Langdon, C., 1988. On the causes of interspecific differences in growth-irradiance relationship for phytoplankton. 2. A general review. J.Plankton Res. 10: 1291–1312.

    Google Scholar 

  • Larsson, U. & A. Hagström, 1979. Phytoplankton exudate release as anenergy source for the growth of pelagic bacteria. Mar. Biol. 52: 199–206.

    Article  Google Scholar 

  • Larsson, U. & A. Hagström, 1982. Fractionated phytoplankton primary production, exudates release and bacterial production in a Baltic eutrophication gradient. Mar. Ecol. 67: 57–70.

    Google Scholar 

  • Lemoalle, J., A. Adeniji, P. Compere, G. G. Ganf, J. Melack & J. F. Talling, 1981. Phytoplankton. In J. J. Symmoens, M. Burgis & J. J. Gaudet (eds), The Eecology of and Utilization of African Inland Waters. UNEP, Nairobi: 37–50.

    Google Scholar 

  • Lewis, W. M. Jr, 1988. Primary production in the Orinoco River. Ecology 69: 679–692.

    Article  Google Scholar 

  • Mangas, E. I. & H. García, 1991. Seasonal fluctuation of zooplankton biomass in Lake Xolotlán (Managua). Hydrobiol. Bull. 25: 157–162.

    Article  Google Scholar 

  • Melack, J. M., 1979. Temporal variability of phytoplankton in tropical lakes. Oecologia 44: 1–7.

    Article  Google Scholar 

  • Montenegro, G. S., 1992. A note on the eolic action as an ecological factor upon Lake Xolotlán (Nicaragua). Verh. int. Ver. Limnol. 25: 894–896.

    Google Scholar 

  • Padan, E., B. Raboy & M. Shilo, 1971. Endogenous dark respiration of the blue green alga Plectenema boryanum. J. Bact. 106: 45–50.

    PubMed  CAS  Google Scholar 

  • Raven, J. A. & S. M. Glidewell, 1975. Photosynthesis, respiration and growth in the shade alga Hydrodictyon africanum. Photosynthetica 9: 361–371.

    CAS  Google Scholar 

  • Ryther, J. H., 1954. The ratio of photosynthesis to respiration in marineplanktonic algae and its effect upon measurement of productivity. Deep Sea Res. 2: 134–139.

    Google Scholar 

  • Schwaerter, S., M. Søndergaard, B. Riemann & L. Møller Jensen, 1988. Respiration in eutrophic lakes: Contribution of bacterioplankton and bacterial growth yield. J. Plankton Res. 10: 551–531.

    Google Scholar 

  • Sentzova, O. Y., K. A. Nitikina & M. V. Gusev, 1975. Oxygen exchange of the obligate phototrophic blue-green alga Anabaena variablis in darkness. Microbiologiya 4: 283–288.

    Google Scholar 

  • Snedecor, G. W. & W. G. Cochran, 1980. Statistical methods. 7th edn. Iowa State University Press, Ames, Iowa, USA.

    Google Scholar 

  • Steele, J. H., 1962. Environmental control of photosynthesis in the sea. Limnol. Oceanogr. 7: 137–150.

    Article  Google Scholar 

  • Sverdrup, H. V., 1953. On conditions for vernal blooming of phytoplankton. J. Cons. perm. int. Explor. Mer. 16: 287–295.

    Google Scholar 

  • Talling, J. F., 1957a. Photosynthetic characteristics of some freshwater diatoms in relation to underwater radiation. New Phytol. 56: 29–48.

    Article  Google Scholar 

  • Talling, J. F., 1957b. The phytoplankton population as a compound photosynthetic system. New Phytol. 56: 133–149.

    Article  Google Scholar 

  • Talling, J. F., 1965. The photosynthetic activity of phytoplankton in East African lakes. Int. Rev. ges. Hydrobiol. 50: 1–32.

    Google Scholar 

  • Talling, J. F., 1971. The underwater light climate as a controlling factor in production ecology of freshwater phytoplankton. Mitt. int. Ver. Limnol. 19: 100–124.

    Google Scholar 

  • Vargas, M. H., K. Vammen, I. Mairena, A. Zelaya, L. Vanagas & C. Chacón, (1991): Estudios de la dispersion horizintal de bacterias fecales en el litoral sur del Lago Xolotlán. Taller de la limnolgia aplicada al Lago de Managua para su recuperacion y aprovechamiento. UNAN, Managua.

    Google Scholar 

  • Wofsy, S. C., 1983. A simple model to predict extinction coeffi-cients and phytoplankton biomass in eutrophic waters. Limnol. Oceanogr. 28: 1144–1155.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Erikson, R. Algal respiration and the regulation of phytoplankton biomass in a polymictic tropical lake (Lake Xolotlán, Nicaragua). Hydrobiologia 382, 17–25 (1998). https://doi.org/10.1023/A:1003424802421

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1003424802421

Navigation