Skip to main content
Log in

Rotating cylinder Hull cell study of anomalous codeposition of binary iron-group alloys

  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The anomalous codeposition of the iron group metals was investigated using the rotating cylinder Hull (RCH) cell. Single metals and binary alloys of iron, nickel and cobalt were deposited in the RCH cell and the partial current densities were determined as a function of length by position sensitive X-ray fluorescence analysis. The measured overall polarization behaviour was used as a boundary condition for the numerical calculation of the potential distribution along the cylinder using the Laplace equation. By combining the results the partial current density potential curves were established. Experiments performed at different rotation rates confirmed the inhibiting effect of the less noble metal on the deposition of the more noble metal. The inhibiting effect of iron on nickel disappeared when iron reached the limiting current. Strong evidence was found that in binary alloy deposition of iron, cobalt and nickel the reaction rate of the less noble metal is promoted by the presence of the more noble component.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Dahms and I. M. Croll, J. Electrochem. Soc. 112 (1965) 771.

    Google Scholar 

  2. P. C. Andricacos and L. T. Romankiw, ‘Magnetically Soft Materials in Data Storage: Their Properties and Electrochemistry’, in Advances in Electrochemical Science and Engineering, Vol. 3 (1994), p. 226.

    Google Scholar 

  3. K. Ohashi, M. Ito and M. Watanabe, ‘Application of Electroplating to Thin Film Heads: An Overview’, Electrochem. Soc. Proc. 88-23 (1988) 525–42.

    Google Scholar 

  4. P. L. Cavallotti, B. Bozzini, L. Nobili and G. Zangari, J. Electrochim. Acta 39 (1994) 1123.

    Google Scholar 

  5. C. A. Ross, Ann. Rev. Mater. Sci. 24 (1994) 159.

    Google Scholar 

  6. R. Chesnutt, J. Appl.Physics. 73 (1993) 6223.

    Google Scholar 

  7. R. L. White, Plat. Surf. Finish. 75 (1988) 70.

    Google Scholar 

  8. S. S. Djokic, M. D. Maksimovic and D. C. Stefanovic, J. Appl. Electrochem. 19 (1989) 802.

    Google Scholar 

  9. P. Duke, T. Montelbano and L. Misel, Plat. Surf. Finish. 69 (1982) 61.

    Google Scholar 

  10. B. Löchel, and A. Maciossek, J. Electrochem. Soc. 143 (1996) 3343.

    Google Scholar 

  11. A. Thommes, W. Stark, K. Leyendecker, W. Bacher, H. Liebscher, and Ch. Jakob, ‘LIGA Microstructures from a NiFe-Alloy: Preparation by Electroforming and their Magnetic Properties’, Electrochem. Soc. Proc. 94-6 (1994) 89–102.

    Google Scholar 

  12. A. Brenner, ‘Electrodeposition of Alloys’, Vols. 1-2 (Academic Press, New York, 1963).

    Google Scholar 

  13. D. Landolt, Electrochim. Acta 39 (1994) 1075.

    Google Scholar 

  14. M. Matlosz, J. Electrochem. Soc. 140 (1993) 2272.

    Google Scholar 

  15. D. Gangasingh and J. B. Talbot, J. Electrochem. Soc. 138 (1991) 3605.

    Google Scholar 

  16. W. Grande and J. B. Talbot, J. Electrochem. Soc. 140 (1993) 675.

    Google Scholar 

  17. P. C. Andricacos, C. Arana, J. Tabib, J. Dukovic and L. T. Romankiw, J. Electrochem. Soc. 136 (1989) 1336.

    Google Scholar 

  18. K. H. Wong, P. C. Andricacos and L. T. Romankiw, ‘Effect of Fe(II) Concentration on the Electrodeposition of Nickel-Iron Alloys’, Electrochem. Soc. Proc. 90-8 (1990) 387–396.

    Google Scholar 

  19. S. Hessami and C. W. Tobias, J. Electrochem. Soc. 136 (1989) 3611.

    Google Scholar 

  20. B. C. Baker and A. C. West, ibid. 144 (1997) 169.

    Google Scholar 

  21. C. Madore and D. Landolt, Plat. Surf. Finish 80 (1993) 73.

    Google Scholar 

  22. C. Madore, A. C. West, M. Matlosz and D. Landolt, Electrochim. Acta 37 (1991) 69.

    Google Scholar 

  23. C. Madore, PhD thesis no. 1189, Ecole Polytechnique Fédéral Lausanne, Switzerland (1993).

  24. C. Madore, M. Matlosz, D. Landolt, J. Appl. Electrochem. 22 (1992) 1155.

    Google Scholar 

  25. C. Madore, D. Landolt, C. Hassenpflug, J. A. Hermann, Plat. Surf. Finish. 82 (1995) 36.

    Google Scholar 

  26. A. C. West, M. Matlosz and D. Landolt, J. Appl. Electrochem. 22 (1992) 301.

    Google Scholar 

  27. M. Matlosz, C. Creton, C. Clerc and D. Landolt, J. Electrochem. Soc. 134 (1987) 3015.

    Google Scholar 

  28. M. Matlosz, ‘Boundary Element Calculations in Design’, Electrochem. Soc. Proc. 95-11 (1995) 221–36.

    Google Scholar 

  29. E. J. Podlaha and D. Landolt, J. Electrochem. Soc. 143 (1996) 885.

    Google Scholar 

  30. P. C. Andricacos, ‘On the Anomalous Codeposition of Ferrous Metal Alloys’, Electrochem. Soc. Proc. 94-31 (1994) 157–76.

    Google Scholar 

  31. A. A. El Miligy, F. Hilbert and W. J. Lorenz, J. Electrochem. Soc. 120 (1973) 247.

    Google Scholar 

  32. N. Zech, E. J. Podlaha and D. Landolt, to be published.

  33. K. Y. Sasaki and J. B. Talbot, J. Electrochem. Soc. 142 (1995) 775.

    Google Scholar 

  34. D. Landolt, N. Zech, E. J. Podlaha, Z. Phys. Chem., submitted.

  35. K. Y. Sasaki and J. B. Talbot, J. Electrochem. Soc. 145 (1998) 981.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zech, N., Podlaha, E.J. & Landolt, D. Rotating cylinder Hull cell study of anomalous codeposition of binary iron-group alloys. Journal of Applied Electrochemistry 28, 1251–1260 (1998). https://doi.org/10.1023/A:1003416328942

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1003416328942

Navigation