Skip to main content
Log in

Ploidy induction and sex control in fish

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

In fish, pre-embryonic events such as insemination, second polar body extrusion and first mitotic cleavage are manipulable and render 37 different types of ploidy induction possible. A classification of physical, chemical, and biological inductors of ploidy is provided. The amazing ability of fish to tolerate genomes from haploid to heptaploid, genomic contributions from the male or female parent alone, and unequal contributions from parents belonging to the same or different species is highlighted; surprisingly, a single species is amenable for 8–12 different types of ploidy induction. Advantages and limitations of different methods and live or preserved tissues for ploidy confirmation are assessed. Live haploids have been induced in Oreochromis mossambicus. With an ability to synthesize rRNAs and metabolic enzymes such as LDH, the haploid embryos are capable of normal translation and transcription, but suffer mass mortality at hatching, perhaps due to expression of lethal mutant genes. Induction of gynogenesis involves egg activation by irradiated homologous or heterologous sperm, and diploidization by retention of the second polar body (meiotic gynogenesis), or suppression of the first mitotic cleavage (mitotic gynogenesis). UV-irradiation inactivates sperm DNA maximally and avoids chromosome fragmentation. Egg activation by UV-irradiated heterologous sperm under dark conditions, and diploidization by pressure shock result in the highest survival of gynogens; meiotic gynogens survive better than mitotic gynogens. The need for confirmation of genetic purity of mitotic gynogens by one or more methods is emphasized. In different species, survival, growth and fertility improve when gynogens are generated successively for two or more generations. Combinations of induction of ploidy and hormonal sex reversal in gynogens renders the scope for generating all-male or all-female populations. In some gynogenetic species genetic homozygosity leads to growth suppression from 3 to 60% however, meiotic gynogens of Clarias macrocephalus and Paralicthys olivaceus display 18 and 35% faster growth. Hypotheses for the unexpected occurrence of males among natural and artificially induced gynogenetic populations are assessed. In a few species, reproductive performance of gynogens is not equivalent to normal females. Maximal elimination of egg genome by UV-radiation, induction of androgenesis using 2n sperm of a tetraploid, facilitation of dispermy using heterologous eggs, and activation by cryopreserved sperm are land-mark events in the history of androgenesis. In male-heterogametic species, androgenesis may produce supermales to establish broodstock for consistent production of all-male populations. In combination with cryopreservation of sperm, androgenesis may prove to be the best method for conservation of fish genomes. As many as 11 different types of triploids are inducible; and most of them require the retention of the second polar body. The yield and survival of triploids are higher than those of gynogens and these values decrease with the kind of inductor used in the following order: pressure < cold < heat shock. Usually triploidy confers sterility, especially in females, and accelerates growth during post-maturation, when reared solitarily in some (Tinca tinca, Oreochromis Mossambicus) or communally (with diploids) in other species (Oncorhynchus mykiss). The presence of two sets of maternal chromosomes does not disturb the manifestation of morphological sexual characters; however, unexpected sex ratios observed in some triploids indicate a preponderance of females in natural populations and a dominance of males in artificially induced populations. In some species, a certain percentage of female triploids are fertile. Possible pathways, through which the natural fertile triploids may form the base for evolution of tetraploids and origin of diploid new species are suggested. Triploids, especially females, suffer delayed maturity, a low gonado-somatic index, and disrupted gametogenesis due to cytogenetic and endocrine incompatibilities; males do not suffer endocrine incompatibility. Three possible pathways, through which oogenesis may be completed in these fertile triploid species, are indicated. Triploid hybridization between salmonids, which can tolerate salinity changes (e.g. chum and pink salmons) and which cannot tolerate early transfer to sea water but are desired for their meat quality (e.g. Atlantic, chinook and coho salmons) is commercially important. Triploid conspecific salmonids grow faster than diploid conspecifics or triploid hybrids. Protocols for the combination of induced ploidy and hormonal sex reversal to generate all-male, all-female or all-sterile triploid populations are described. In triploids, the increase in nuclear DNA per cell is 1.3 to 1.7 times that of diploids, which results in corresponding volumetric increase of a cell. This, in turn, imposes corresponding decreases in total cell surface area and cell number of a tissue or a triploid individual; however, such a decrease in cell surface area does not impair metabolic processes like oxygen uptake and food utilization. Data for effective temperature required to induce cold or heat shock to retain the second polar body suggest that an elevation of 18, 15 and 14 °C successfully retains the polar body in salmonids, cyprinids and cichlids; the corresponding values for the depression of temperature are 11, 19 and 21 °C, respectively. Seven different kinds of tetraploidy are inducible; however, live, feeding tetraploids have been induced in ten species only. Causes for embryonic or post-embryonic mortality of tetraploids are discussed. Increasing maternal genomic contribution and heterologous insemination appear to enhance tetraploid survival. Survival and growth of Oncorhynchus mykiss progressively improve in F1 and F2 tetraploid progenies. In a rare strain of the loach, Misgurnus anguillicaudatus, pentaploids, hexaploids and heptaploids have been successfully induced. An individual polyploid loach (3n) simultaneously spawns small, intermediate and large eggs carrying n, 2n and 3n genomes. It is not clear how during oogenesis the passage of n, 2n and 3n genomes is regulated into small, intermediate and large eggs. However, evidence from other fish species is accumulating for the simultaneous production of at least two kinds of eggs by a single female. Studies on ploidy induction have shown the magnitude of the complicated genetic mechanisms that control sex determination in fish.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agnese, J. F., P. Berresi, C. Lévêque & J. F. Guegan, 1990. Two lineages, 2n and 4n, demonstrated in African species of Barbus (Osteichthyes, Cyprinidae): on the coding of differential gene expression. Aquat. living Res. 3: 305–311.

    Google Scholar 

  • Aida, T., 1921. On the inheritance of colour in a fresh water fish, Aplocheilus latipes (Temmick and Schlegel), with special reference to the sex-linked inheritance. Genetics 6: 554–573.

    Google Scholar 

  • Aldridge, F. J., R. Q. Marston & J. V. Shireman, 1990. Induced triploids and tetraploids in bighead carp, Hypophthalmichthys nobilis, verified by multiembryo cytoflowrimetric analysis. Aquaculture 87: 121–131.

    Google Scholar 

  • Aliah, R. S., K. Yamaoka, Y. lnada & N. Taniguchi, 1990. Effects of triploidy on tissue structure of some organs in ayu. Nippon Suisan Gakkaishi 56: 569–575.

    Google Scholar 

  • Allen, Jr. S. K., 1983. Flow cytometry: assaying experimental polypioid fish and shellfish. Aquaculture 33: 317–328.

    Google Scholar 

  • Allen, Jr. S. K. & J. G. Stanley, 1976. Reproductive sterility in polypioid brook trout Salvelinus fontinalis. Trans. am. Fish. Soc. 107: 474–478.

    Google Scholar 

  • Allen, Jr. S. K. & J. G. Stanley, 1979. Polypioid mosaics induced by cytochalasin B in land-locked salmon Salmo salar. Trans. am. Fish. Soc. 108: 462–466.

    Google Scholar 

  • Allen, Jr. S. K. & J. G. Stanley, 1981. Mosaic polypioid Atlantic salmon (Salmo salar induced by cytochalasin B. Rapp. P. v. Reun. Cons. int. Explor. Mer. 178: 509–510.

    Google Scholar 

  • Allen, Jr. S. K. & J. G. Stanley, 1983. Ploidy of the hybrid grass carp X bighead carp determined by flow cytometry. Trans. am. Fish. Soc. 115: 841–848.

    Google Scholar 

  • Allen, Jr., S. K. & R. J. Wattendorf, 1986. A review of the production and quality control of triploid grass carp and progress in implementing 'sterile’ triploids as management tools in the U. S. Aquaculture 57: 359–379.

    Google Scholar 

  • Amemiya, T. & J. R. Gold, 1990. Cytogenetic studies in North American minnows (Cyprinidae) XVII. Chromosomal NOR phenotypes of 12 species, with comments on cytosystematic relationship among 50 species. Hereditas 112: 231–247.

    Google Scholar 

  • Arai, K., 1984. Developmental genetic studies on salmonids: morphogenesis, isozyme phenotypes and chromosomes in hybrid embryos. Mem. Fac. Fish. Hokkaido Univ. 31: 1–94.

    Google Scholar 

  • Arai, K., 1986. Effect of allotriploidization on development of the hybrids between female chum salmon and male brook trout. Bull. Jap. Soc. Sci. Fish. 52: 823–829.

    Google Scholar 

  • Arai, K., 1988. Viability of allotriploids in salmonidae. Nippon Suian Gakkaishi 54: 1695–1701.

    Google Scholar 

  • Arai, K. & N. P. Wilkins, 1987. Triplodization of brown trout (Salmo trutta) by heat shock. Aquaculture 64: 97–103.

    Google Scholar 

  • Arai, K., K. Matsubara & R. Suzuki, 1991a. Karyotype and erythrocyte size of spontaneous tetraploidy and triploidy in the loach Misgumus anguillicaudatus. Nippon Suisan Gakkaishi 57: 2167–2172.

    Google Scholar 

  • Arai, K., K. Matsubara & R. Suzuki, 1991b. Chromosomes and developmental potential of progeny of spontaneous tetraploid loach Misgumus anguillicaudatus. Nippon Suisan Gakkaishi 57: 2173–2178.

    Google Scholar 

  • Arai, K., T. Masaoka & R. Suzuki, 1992. Optimum conditions of UV-ray irradiation for genectic inactivation of loach eggs. Nippon Suisan Gakkaishi 58: 1197–1201.

    Google Scholar 

  • Arai, K., K. Matsubara & R. Suzuki, 1993. Production of polypioids and viable gynogens using spontaneously occurring tetraploid loach, Misgumus anguillicaudatus. Aquaculture 117: 227–235.

    Google Scholar 

  • Arai, K., M. Ikeno & R. Suzuki, 1995. Production of androgenetic diploid loach Misgumus anguillicaudatus using spermatozoa of natural tetraploids. Aquaculture 137: 131–138.

    Google Scholar 

  • Baksi, M. & J. C. Means, 1988. Preparation of chromosomes from early stages of fish for cytogenetic analysis. J. Fish Biol. 32: 321–325.

    Google Scholar 

  • Baldwin, N. W., C. A. Busack & K. O. Meals, 1990. Induction of triploidy in white crappie by temperature shock. Trans. am. Fish. Soc. 119: 438–444.

    Google Scholar 

  • Baroiller, J. F., D. Chourrout, A. Fostier & B. Jalabert, 1995. Temperature and sex chromosomes govern sex ratios of the mouth-brooding cichlid fish Oreochromis niloticus. J. exp. Zool 273: 216–223.

    Google Scholar 

  • Beck, M. L., C. J. Biggers & C. J. Barker, 1984. Chromosomal and electrophoretic analysis of hybrids between grass carp and bighead carp (Pisces: Cyprinidae). Copeia 2: 337–342.

    Google Scholar 

  • Belecke, A. M. & G. H. Schwark, 1995. Sex determination in tilapia (Oreochromis niloticus) sex ratio in homozygous gynogenetic progeny and their offspring. Aquaculture 137: 57–65.

    Google Scholar 

  • Benfey, T. J., 1989. A bibliography of triploid fish, 1943 to 1988. Can. Tech. Rep. Fish. Aquat. Sci. 1682: 1–33.

    Google Scholar 

  • Benfey, T. J., 1991. The physiology of triploid salmonids in relation to aquaculture. Can. Tech. Rep. Fish. Aquacult. Sci. 1789: 73–80.

    Google Scholar 

  • Benfey, T. J., A. M. Sutterlin & R. J. Thompson, 1984. Use of erythrocyte measurements to identify triploid salmonids. Can. J. Fish. aquat. Sci. 41: 980–984.

    Google Scholar 

  • Benfey, T. J., I. F. Solar, G. E. Jong & E. M. Donaldson, 1986. Flowcytometric confirmation of aneuploidy in sperm from triploid rainbow trout. Trans. am. Fish. Soc. 115: 838–840.

    Google Scholar 

  • Benfey, T. J., P. G. Bosa, N. L. Richardson & E. M. Donaldson, 1988. Effectiveness of commercial scale pressure shocking device for producing triploid salmonids. Aquacult. Eng. 7: 147–154.

    Google Scholar 

  • Benfey, T. J., H. M. Dye, I. I. Solar & E. M. Donaldson, 1989. The growth and reproductive endocrinology of adult triploid Pacific salmonids. Fish Physiol. Biochem. 6: 113–120.

    Google Scholar 

  • Bertollo, L. A. C. & Z. I. Cavallaro, 1992. A highly differentiated ZZIZW sex chromosome system in a Characidae. Cytogenet. Cell. Genet. 60: 60–63.

    PubMed  Google Scholar 

  • Bidwell, C. A., L. C. Chrisman & S. G. Libey, 1985. Polypioidy induced by heat shock in channel catfish. Aquaculture 51: 25–32.

    Google Scholar 

  • Birstein, V. J., A. I. Poletaev & B. F. Goncharov, 1993. The DNA content in Eurasian sturgeon species determined by flow cytometry. Cytometry 14: 377–383.

    PubMed  Google Scholar 

  • Birstein, V. J., J. R. Waldman & W. E. Bemis, 1997. Sturgeon Biodiversity and Conservation. Kluwer Academic Publishers, Dordrecht: 444.

    Google Scholar 

  • Blanc, J. M. & B. Chevassus, 1982. lnterspecific hybridization of salmonid fish. 2. Survival and growth upto the 4th month after hatching in F, generation hybrids. Aquaculture 29: 383–387.

    Google Scholar 

  • Blanc., J. M., D. Chourrout & F. Krieg, 1987. Evaluation of juvenile rainbowtrout survival and growth in halfsib families from diploid and tetraploid sires. Aquaculture 65: 215–220.

    Google Scholar 

  • Blanc, J. M., H. Poisson & F. Vallee, 1992. Survival, growth and sexual maturation of the triploid hybrid between rainbow trout and Arctic char. Aquat. living Res. 5: 15–21.

    Google Scholar 

  • Blanc, J. M., H. Poisson, A. M. Escaffre, P. Aguirre & F. Vallee, 1993. Inheritance of fertilizing ability in male tetraploid rainbow trout (Oncorhynchus mykiss). Aquaculture 110: 61–70.

    Google Scholar 

  • Blythe, S., 1994. Determination of sex and maturational status of striped bass (Merone saxatilis) using Ultrasonic imaging. Aquaculture 125: 175–184.

    Google Scholar 

  • Bonar, S. A., G. L. Thomas & G. B. Pauley, 1988. Evaluation of the separation of triploid and diploid grasscarp, Ctenopharyngodon idelia (Valenciennes), by external morphology. J. Fish Biol. 33: 895–898.

    Google Scholar 

  • Bongers, A. B. J., E. P. C. Veld, K. AboHashema, I. M. Bremmer, E. H. Eding, J. Komen & C. J. J. Richter, 1994. Androgenesis in common carp (Cyprinus carpio L.) using UV irradiation in a synthetic ovarian fluid and heat shocks. Aquaculture 122: 119–132.

    Google Scholar 

  • Bongers, A. B. J., B. J. Abarca, Z. B. Doulabi, E. H. Eding, J. Komen & C. J. J. Richter, 1995. Maternal influence on development of aridiogenetic clones of common carp, Cyprinus carpio L. Aquaculture 137: 139–147.

    Google Scholar 

  • Bongers, A. B. J., M. Z. BenAyed, B. Z. Doulabi, J. Komen C. J. J. Richter, 1997. Origin of variation in isogenic, gynogenetic and androgenetic strains of common carp, Cyprinus carpio. J. exp. Zool. 277: 72–79.

    Google Scholar 

  • Burns, E. R., J. F. Anson, W. G. Hinson, J. L. Pipkin, M. G. Kieve & R. C. Goetz, 1986. Effect of fixation with formalin on flow cytometric measurement of DNA in nucleated blood cells. Aquaculture 55: 149–155.

    Google Scholar 

  • Carman, O., T. Oshiro & F. Takashima, 1992. Variation in the maximum number of nucleoli in diploid and triploid common carp. Nippon Suisan Gakkaishi 58: 2303–2309.

    Google Scholar 

  • Carter, R. E., G. C. Mair, D. O. F. Skibinski, D. T. Parkin & J. A. Beardmore, 1991. The application of DNA finger printing in the analysis of gynogenesis in tilapia. Aquaculture 95: 41–52.

    Google Scholar 

  • Cassani, J. R., 1990. A new method for early ploidy evaluation of grass carp larvae. Progr. Fish Cult. 52: 207–210.

    Google Scholar 

  • Cassani, J. R. & W. E. Caton, 1985. Induced triploidy in grass carp, Ctenopharyngodon idella Val. Aquaculture 46: 36–44.

    Google Scholar 

  • Cassani, J. R. & W. E. Caton, 1986. Growth comparisons of diploid and triploid grass carp under varying conditions. Progr. Fish. Cult. 48: 184–187.

    Google Scholar 

  • Cassani, J. R. & W. E. Caton, 1986. Efficient production of triploid grass carp (Ctenopharyngodon idella) utilizing hydrostatic pressure. Aquaculture 55: 43–50.

    Google Scholar 

  • Cassani, J. R., W. E. Caton & B. Clark, 1984. Morphological comparisons of diploid and triploid hybrid grass carp, Ctenopharyngodon idella female × Hypophthalmichthys nobilis male. J. Fish 25: 269–278.

    Google Scholar 

  • Cassani, J. R., D. R. Maloney, H. P. Allaire, J. H. Kerby, 1990. Problems associated with tetraploid induction and survival in grass carp, Ctenopharyngodon idella. Aquaculture 88: 273–284.

    Google Scholar 

  • Castelli, M., 1994. Study on sex determination in the common barbel (Barbus barbus L.) (Pisces, Cyprinidae) rising gynogenesis. In A. R. Beaumont (ed.), Genetics and Evolution of Aquatic Organisms. Chapman and Hall, London: 509–519.

    Google Scholar 

  • Chen, S. J., N. H. Chao & I. C. Liao, 1986. Diploid gynogenesis induced by cold shock in cyprinid loach, Misgumus anguillicaudatus. In J. L. Maclean, I. B. Dizorl & L. B. Hossilos (eds), The First Asian Fish. Forum. Asian Fish. Soc., Manila: 105–108.

    Google Scholar 

  • Cherfas, N. B., 1981. Gynogenesis in fishes. In V. S. Kirpichnikov (ed.), Genetic Bases of Fish Selection. Springer, Berlin: 255–273.

    Google Scholar 

  • Cherfas, N. B., O. Kozinsky, S. Rothbard & G. Hulata, 1990. Induced diploid gynogenesis and triploidy in ornamental (koi) carp, Cyprinus carpio L. 1. Experiments on timing of temperature shock. Israel. J. Aquacult. 42: 3–9.

    Google Scholar 

  • Cherfas, N. B., G. Hulata & O. Kozinsky, 1993a. Induced diploid gynogenesis and polypioidy in ornamental (koi) carp, Cyprinus carpio L. 2. Timing of heat shock during the first cleavage. Aquaculture 111: 281–290.

    Google Scholar 

  • Cherfas, N. B., B. I. Gomelsky, Y. Peretz, N. Ben Dom, G. Hulata & B. Moav, 1993b. Induced gynogenesis and polypioidy in the Israeli common carp lineDOR70*. Israel J. Aquacult. 45: 59–72.

    Google Scholar 

  • Cherfas, N. B., B. I. Gomelsky, O. V. Emelyanova & A. V. Recoubratsky, 1994a. Induced diploid gynogenesis and polypioidy in crucian carp, Carassius auratus gibelio (Bloch) × common carp, Cyprinus carpio L., hybrids. Aquacult. Fish. Mgmt 25: 943–954.

    Google Scholar 

  • Cherfas, N. B., B. I. Gomelsky, N. BenDom, Y. Peretz & G. Hulata, 1994b. Assessment of triploid common carp (Cyprinus carpio L.) for culture. Aquaculture 127: 11–18.

    Google Scholar 

  • Cherfas, N. B., B. Gomelsky, N. BenDom & G. Hulata, 1995. Evidence for the heritable nature of spontaneous diploidization in common carp Cyprinus carpio L. eggs. Aquacult. Res. 26: 289–292.

    Google Scholar 

  • Chevassus, B., 1979. Hybridization in salmonids results and perspectives. Aquaculture 17: 113–128.

    Google Scholar 

  • Chevassus, B., R. Guyomard, D. Chourrout & E. Quillet, 1983. Production of viable hybrids in salmonids by triploidization. Genet. Sci. Evol. 15: 519–532.

    Google Scholar 

  • Chourrout, D., 1980. Thermal induction of diploid gynogenesis and triploidy in the eggs of the rainbow trout (Salmo gairdneri). Reprod. Nutr. Develop. 20: 727–733.

    Google Scholar 

  • Chourrout, D., 1982a. Gynogenesis caused by ultraviolet irradiation of salmonid sperm. J. exp. Zool. 223: 175–181.

    PubMed  Google Scholar 

  • Chourrout, D., 1982b. La gynogenèse chez les vertebr&#x00E9;s. Reprod. Nutr. Develop. 22: 713–724.

    Google Scholar 

  • Chourrout, D., 1984. Pressure induced retention of second polar body and suppression of first cleavage: production of all triploids, all tetraploids, heterozygous, homozygous diploid gynogenesis. Aquaculture 36: 111–126.

    Google Scholar 

  • Chourrout, D., 1986a. Techniques of chromosomes manipulation in rainbow trout: a new evaluation with karyology. Theor. appl. Genet 72: 627–632.

    Google Scholar 

  • Chourrout, D., 1986b. Use of grayling sperm (Thiymallus thymallus) as a marker for the production of gynogenetic rainbow trout (Salmo gairdneri). Theor. appl. Genet. 72: 633–636.

    Google Scholar 

  • Chourrout, D., 1987. Genetic manipulation in fish: review of methods. In K. Tiews (ed.), Selection, Hybridization and Genetic Engineering in Aquaculture. Bordeaux, Heenemann, Berlin 2: 111–126.

    Google Scholar 

  • Chourrout, D. & E. Quillet, 1982. Induced gynogenesis in the rainbowtrout: sex and survival of progenies. Production of all-triploid populations. Theor. appl. Genet. 63: 201–205.

    Google Scholar 

  • Chourrout, D. & I. Nakayama, 1987. Chromosome studies of progenies of tetraploid female rainbow trout. Theor. appl. Genet. 74: 687–692.

    Google Scholar 

  • Chourrout, D., B. Chevassus, F. Krieg, A. Happe, G. Burger & P. Renard, 1986. Production of second generation triploid and tetraploid rainbow trout by mating tetraploid males and diploid females. Potentials of tetraploid fish. Theor. appl. Genet. 72: 193–206.

    Google Scholar 

  • Cimino, M. C., 1972. Meiosis in triploid all-female fish (Poecilopsis, Poeciiiidae). Science 175: 1484–1486.

    PubMed  Google Scholar 

  • Cimino, M. C., 1973. Karyotypes and erythrocyte sizes of some diploid and triploid fishes of genus Poeciliopsis. J. Fish. Res. Bd Can. 30: 1736–1737.

    Google Scholar 

  • Cimino, M. C., 1974. The nuclear DNA content of diploid and triploid Poecilopsis and poeciiiid fishes with reference to the evolution of unisexual forms. Chromosoma 47: 297–307.

    PubMed  Google Scholar 

  • Collares-Pereira, M. J., 1987. The evolutionary role of Hybridization: the example oil natural Iberian fish populations. In K. Tiews (ed.), Selection, Hybridization and Genetic Engineering in Aquacutlure. Bordeaux, Heenemann, Berlin 1: 83–92.

    Google Scholar 

  • Crozier, W. W. & I. J. J. Moffett, 1989. Application of an electrophoretically detectable genetic marker to ploidy in brown trout (Salmo trutta L.) triploid used by heatshock. Aquaculture 80: 231–239.

    Google Scholar 

  • Dasgupta, S., 1962. Induction of triploidy by hydrostatic pressure in the leopard frog Rana pipiens. J. exp. Zool. 151: 105–121.

    PubMed  Google Scholar 

  • Dawley, R. M., R. J. Schultz & K. A. Goddard, 1987. Clonal reproduction and polypioidy in unisexual hybrids of Phoximus eos and Phoximus neogaeus (Pisces: Cyprinidae). Copeia 1987: 275–283.

    Google Scholar 

  • Deng, Y., T. Oshiro, S. Higaki & F. Takashima, 1992. Survival, growth and morphometric characteristics in diploid and triploid hybrids of rainbow trout, Oncorhyrchus mykiss. Suisanzoshoku H4: 121–129.

    Google Scholar 

  • Denton, T. E. & W. M. Howell, 1969. A technique for obtaining chromosomes from the scale epithelium of teleost fishes. Copeia 1969: 392–393.

    Google Scholar 

  • Devlin, R. H., B. K. McNeil, I. I. Solar & E. M. Donaldson, 1994. A rapid PCR-based test for Y-chromosomal DNA allows simple production of allfemale strains of chinook salmon. Aquaculture 128: 211–220.

    Google Scholar 

  • Disney, J. E., K. R. Johnson & G. H. Thorgaard, 1987. lntergeneric gene transfer of six isozyme loci in rainbow trout by sperm chromosome fragmentation and gynogenesis. J. exp. Zool. 244: 151–158.

    Google Scholar 

  • Don, J. R. & R. R. Avtalion, 1986. The induction of triploidy in Oreochromis aureus by heat shock. Theor. appl. Genet 72: 186–192.

    Google Scholar 

  • Don, J. R. & R. R. Avtalion, 1988a. Comparative study on the induction of triploidy in tilapias using cold and heat shock techniques. J. Fish. Biol. 32: 665–672.

    Google Scholar 

  • Don, J. R. & R. R. Avtalion, 1988b. Production of viable tetraploid tilapias using cold shock technique. Israel J. Aquacult. 40: 17–21.

    Google Scholar 

  • Donaldson, E. M. & G. A. Hunter, 1982. Sex control in fish with particular reference to salmonids. Can. J. Fish. aquat. Sci. 39: 99–110.

    Google Scholar 

  • Dorson, M., B. Chevassus & C. Torhy, 1991. Comparative susceptibility of three species of char and of rainbow trout × char triploid hybrids to several pathogenic salmonids viruses. Dis. Aquat. Org. ll: 217–224.

    Google Scholar 

  • Duchac, B., F. Huber, H. Muller & D. Senn, 1982. Mating behaviour and cytogenetical aspects of sex inversion in the fish Coris julis L. (Labridae, Teleostei). Experientia 38: 809–810.

    Google Scholar 

  • Echelle, A. A. & D. T. Mosier, 1981. All-female fish: a cryptic species of Menidia? (Atherinidae). Science 212: 1411–1413.

    Google Scholar 

  • Echelle, A. A. & D. T. Mosier, 1982. Menidia clarkhubbsi, n. sp. (Pisces: Atherinidae) an all-female species. Copeia 1982: 533–540.

    Google Scholar 

  • Echelle, A. A., A. F. Echelle, L. E. Debault, & D. W. Durham, 1988. Ploidy levels in the silver side fishes (Athernidae, Menidia) on the Texas coast: flow cytometric analysis of the occurrence of allotriploidy. J. Fish Biol. 32: 835–844.

    Google Scholar 

  • Fan, Z. T. & J. B. Shen, 1990. Studies on the evolution of bisexual reproduction in crucian carp (Carassius auratus gibelio Bloch). Aquaculture 84: 235–244.

    Google Scholar 

  • Fiajshans, M., P. Rab & S. Dobosz, 1992. Frequency analysis of active NORs in nuclei of artificially induced triploid fish. Theor. appl. Genet. 85: 68–72.

    Google Scholar 

  • Fiajshans, M., P. Kvasnicka & P. Rab, 1993a. Genetic studies in tench (Tinca tinca L.) high incidence of spontaneous triploidy. Aquaculture 110: 243–248.

    Google Scholar 

  • Flaihans, M., O. Linhart & P. Kvasnicka, 1993b. Genetic studies of tench (Tinca tinca L.): induced triploidy and tetraploidy and first performance data. Aquaculture 113: 301–312.

    Google Scholar 

  • Francis, R. C., 1992. Sexual lability in teleosts: developmental factors. Quart. Rev. Biol. 67: 1–18.

    Google Scholar 

  • Gaillard, G. & A. Jaylet, 1975. Mechanisme cytologique de la tetraploidie experimentale chez la triton Pleurodeles waltlii Michach. Chromosoma 38: 173–184.

    Google Scholar 

  • Galbreath, P. F. & G. H. Thorgaard, 1994. Viability and freshwater performance of Atlantic salmon (Salmo salar × brown trout (Salmo trutta) triploid hybrids. Can. J. Fish. aquat. Sci. 51: 16–24.

    Google Scholar 

  • Galbreath, P. F. & G. H. Thorgaard, 1995. Sexual maturation and fertility of diploid and triploid Atlantic salmon × brown trout hybrids. Aquaculture 137: 299–311.

    Google Scholar 

  • Galetti, P. M. & F. Foresti, 1986. Evolution of the ZZ/ZW system in Leporinus (Pisces, Anostomidae): role of constitutive heterochromatin. Cytogenet. Cell Genet. 43: 43–46.

    Google Scholar 

  • Galetti, Jr., P. M., F. Foresti, L. A. C. Bertollo & O. M. Filho, 1981. Heteromorphic sex chromosomes in three species of the genus Leporinus (Pisces, Anostomidae). Cytogenet. Cell Genet. 29: 138–142.

    PubMed  Google Scholar 

  • Gardener, E. J., M. J. Simmons & D. P. Snustad, 1991. Principles of Genetics. Wiley, New York, 629 pp.

    Google Scholar 

  • George, T. & T. J. Pandian, 1995. Production of ZZ females in the female heterogametic black molly Poecilia sphenops by endocrine sex reversal and progeny testing. Aquaculture 136: 81–90.

    Google Scholar 

  • George, T. & T. J. Pandian, 1998. Observation of sex ratio of rosy barb. (unpublished)

  • George, T., T. J. Pandian & S. Kavumpurath, 1994. Inviability of the YYzygote of the fighting fish, Betta splendens. Israel J. Aquacult. 46: 3–8.

    Google Scholar 

  • Gervai, J., T. Marian, Z. Krasznai, A. Nagy & V. Csanyi, 1980a. Occurrence of aneuploidy in radiation gynogenesis of carp Cyprinus carpio L. J. Fish Biol. 16: 435–439.

    Google Scholar 

  • Gervai, J., S. Peter, A. Nagy, L. Hovarth& V. Csanyi, 1980b. Induced triploidy in carp, Cyprinus carpio L. J. Fish Biol. 17: 667–671.

    Google Scholar 

  • Gervai, J. & V. Csanyi 1984. Artificial gynogenesis and mapping of genecentromere distances in the paradise fish Macropodus opercularis. Theor. appl. Genet. 68: 481–485.

    Google Scholar 

  • Gold, J. G. & J. R. Avise, 1974. Spontaneous triploidy in California roach, Hesperolecus symetricus (Cyprinidae). Cytogenet. Cell. Genet. 17: 144–149.

    Google Scholar 

  • Gomelsky, B. I., O. V. Emelyanova & A. V. Recoubratsky, 1992. Application of the scale cover gene (N) to identification of type of gynogenesis and determination of ploidy in common carp. Aquaculture 106: 233–237.

    Google Scholar 

  • Goodier, J., H. F. Ma& F. Yamazaki, 1987. Chromosome fragmentation and loss in two salmonid hybrids. Bull. Fac. Fish. Hokkaido Univ. 38: 181–184.

    Google Scholar 

  • Gorshkova, G., S. Gorshkov, A. Hadani, H. Gorditi & W. Knibb, 1995. Chromosome set manipulation in marine fish. Aquaculture 137: 157–15.

    Google Scholar 

  • Gray, A. K., M. A. Evans & G. H. Thorgaard, 1993. Viability and development of diploid and triploid salmonid hybrids. Aquaculture 112: 125–142.

    Google Scholar 

  • Grunina, A. S., A. V. Recoubratsky, O. V. Emelyanova, & A. A. Neyfakh, 1995. Induced androgenesis in fish: production of viable aridrogenetic diploid hybrids. Aquaculture 137: 149.

    Google Scholar 

  • Gubbay, J., J. Colligon, P. Koopman, B. Capel, A. Economou, A., Munsterberg, N. Vivian, P. Goodfellow & R. A. Lovell-Badge, 1990. A gene mapping to the sex-determining region of the mouse Y chromosome is a number of a novel family of embryonically expressed genes. Nature 346: 245–250.

    Article  PubMed  Google Scholar 

  • Gui, J. F., J. Jia, S. C. Liang & Y. G. Jiang, 1991. Light and electron microscopic analysis of meiotic chromosome pairing in triploid male, transparent coloured crucian carp. Aquaculture 117: 138.

    Google Scholar 

  • Gui, J. F., J. Jia, S. C. Liang & Y. G. Jiang, 1992. Meiotic chromosome behaviour in male triploid transparent coloured crucian carp, Carassius auralus L. J. Fish Biol. 41: 317–326.

    Google Scholar 

  • Haaf, T. & M. Schmid, 1984. An early stage of ZW/ZZ sex chromosome differentiation in Poecilia sphenpps var melanistica (Poeciiiidae, Cyprinodontiformes). Chromosoma 89: 37–41.

    Google Scholar 

  • Habicht, C., J. E. Seeb, R. B. Gates, I. R. Brock & C. A. Ofito, 1994. Triploid coho salmon outperform diploid and triploid hybrids between coho salmon and chinook salmon during their first year. Can. J. Fish. aquat. Sci. 51(Suppl 1): 31–37.

    Google Scholar 

  • Han, H. S., H. Mannen, A. Tsujimura & N. Taniguciii, 1992. Application of DNA finger printing to confirmation of clone in ayu. Nippon Suisan Gakkaishi 58: 2027–2031.

    Google Scholar 

  • Hijikata, M., T. Kajishima, T. Nomura & Y. Murayama, 1983. Gynogens and clones of Carassius auratus gibellio. Zool. Mag. 92: 509.

    Google Scholar 

  • Hoar, W. S., 1969. Reproduction. In W. S. Hoar & D. J. Randall (eds), Fish Physiology. Academic Press, New York, 3: 1–72.

    Google Scholar 

  • Hollebecq, M. G., F. Chambeyron & D. Chourrout, 1986. Triploid common carp produced by heat shock. Reprod. in fish — Basic and applied aspects in endocrinology and genetics, Tel Aviv, Israel: 12–17.

    Google Scholar 

  • Horvath, L. & L. Orban, 1995. Genome and gene manipulation in the common carp. Aquaculture 129: 157–181.

    Google Scholar 

  • Hussain, M. G., A. Chatterji, B. J. Mc Andrew & R. Johnstone, 1991. Triploidy induction in the Nile tilapia, Oreochromis niloticus L. using pressure, heat and cold shocks. Theor. Appl. Genet. 81: 6–12.

    Google Scholar 

  • Hussain, M. G., D. J. Penman, B. J. McAdrew & R. Johnstone, 1993. Suppression of first cleavage in nile tilapia, Oreochromis niloticus L. — a comparison of the relative effectiveness of pressure and heat shocks. Aquaculture 111: 263–270.

    Google Scholar 

  • Hussain, M. G., 1998. Inhibition ofmeiotic andmitotic cell divisions in Nile tilapia, Oreochromis niloticus L. eggs using temperature and pressure shock treatment. Asian Fish. Sci. (in press).

  • Hussain, M. G., B. J. McAndrew, D. J. Penman & P. Sodusk, 1994. Estimate genecentromere recombination frequencies in gynogenetic diploids of Oreochromis niloticus (L), using allozymes, skin colour and a putative sexdetermination lows (SDL-2). In A. R. Beamont (ed.), Genetics and Evolution of Aquatic organisms. Chapman and Hall, London, U. K.: 502–509.

    Google Scholar 

  • Hussain, M. G., G. P. S. Rao, N. M. Humayun, C. F. Randall, D. J. Penman, D. Kime, N. R. Bromage, J. M. Myers, J. M. & B. J. McAndrew, 1995. Comparative performance of growth, biochemical composition and endocrine profiles in diploid and triploid tilapia Oreoctiromis niloticus L. Aquaculture 138: 87–97.

    Google Scholar 

  • Ihssen, P. E., L. R. McKay, I. McMillan & R. B. Phillips, 1990. Ploidy manipulation and gynogenesis in fishes: cytogenetic and fisheries applications. Trans. am. fish. Soc. 119: 698–717.

    Google Scholar 

  • Ijiri, K., 1980. Gamma-ray irradiation of the spermof the fish Oryzias latipes and induction of gynogenesis. J. Radiat. Res. 21: 263–270.

    PubMed  Google Scholar 

  • Ijiri, K. & N. Egami, 1980. Hertwig effect causes by UV-irradiation of sperm of Oryzias latipes (Teleost) and its photoreactivation. Mut. Res. 69: 241–248.

    Google Scholar 

  • Islam, M. S., M. S. Shah, M. A. Rahman & H. A. Chowdhury, 1998. Induction of triploidy in rohu, Labeo rohita by heat shock treatment and their comparative growth study with normal diploid. (Personal Communication).

  • Jaylet, A. & V. Ferrier, 1978. Experimental gynogenesis in the new species Pleurodeles swalthii and P. prioreti. Chromosoma 69: 65–80.

    PubMed  Google Scholar 

  • Jensen, G. L., W. L. Sheiton, S. L. Yang & L. O. Wilken, 1978. Sex reversal in gynogenetic grasscarp by implantation of methyl testosterone. Trans. am. Fish. Soc. 112: 79–85.

    Google Scholar 

  • Jiang, Y. G., H. X. Yu, B. D. Chen, S. C. Liang, D. L. Yang & S. E. Lin, 1982. Artificial and natural gynogenesis in crucian carp. Acta hydrobiol. sin. 7: 471–477.

    Google Scholar 

  • John, G., P. V. G. K. Reddy & R. K. Jana, 1988. Induced gynogenesis in the Indian major carp, Cirrhinus mrigala (Ham.). In M. Mohan Joseph (ed.), The First Indian Fish. Forum Proc., Asian Fish. Soc., Indian Branch, Mangalore: 107–109.

    Google Scholar 

  • Johnson, K. R. & J. E. Wright, 1986. Female brown trout × Atlantic salmon hybrids produce gynogens and triploids when backcrossed to male Atlantic salmon. Aquaculture 57: 345–358.

    Google Scholar 

  • Johnson, O. W., P. R. Rabinovich & F. M. Utter, 1984. Comparison of the reliability of a Coulter counter with a flow cytometer in determining ploidy levels in Pacific salmon. Aquaculture 43: 99–103.

    Google Scholar 

  • Johnson, O. W., W. W. Dickhoff & F. M. Utter, 1986. Comparative growth and development of diploid and triploid coho salmon Oncorhynchus kisutch. Aquaculture 57: 329–336.

    Google Scholar 

  • Johnstone, R., 1987. Survival rates and triploidy rates following heat shock in Atlantic salmon ova retained for different intervals in the body cavity after first stripping together with preliminary observations on the use of pressure. In K. Tiews (ed.), Selection, Hybridization and Genetic Engineering in Aquaculture, Bordeaux, Heenemann, Berlin, 2: 219–224.

    Google Scholar 

  • Johnstone, R. & R. F. Lincoln, 1986. Ploidy estimation using erythrocytes from formaiin-fixed salmonid try. Aquaculture 55: 141–148.

    Google Scholar 

  • Johnstone, R., R. M. Knott, A. G. MacDonald, & V. Walsingham, 1989. Triploidy induction in recently fertilized Atlantic salmon ova using anaesthetics. Aquaculture 78: 229–236.

    Google Scholar 

  • Kallman, K. D., 1984. A new look at sex determination in poeciiiid fishes. In B. J. Turner (ed.), Evolutionary Genetics of Fishes, Plenum Press, New York: 95–171.

    Google Scholar 

  • Kavumpurath, S. & T. J. Pandian, 1990. Induction of triploidy in the zebrafish Brachydanio rerio (Hamiiton). Aquacult. Fish. Mgmt 21: 299–306.

    Google Scholar 

  • Kavumpurath, S. & T. J. Pandian, 1992a. Effects of induced triploidy on aggressive display in the fighting fish, Betta splendens Regan. Aquacult. Fish. Mgmt 23: 281–290.

    Google Scholar 

  • Kavumpurath, S. & T. J. Pandian, 1992b. Hybridization and gynogenesis in two species of the genus Brachydanio. Aquaculture 105: 107–126.

    Google Scholar 

  • Kavumpurath, S. & T. J. Pandian, 1992c. The development of all-male sterile triploid fighting fish (Betta splendens Regan) by integrated hormonal sex reversal of broodstock and chromosome set manipulation. Israel J. Aquacult. 44: 111–119.

    Google Scholar 

  • Kavumpurath, S. & T. J. Pandian, 1992d. Production of YY male in guppy (Poecilia reticulata) by endocrine sex reversal and progeny testing. J. asian Fish. Sci. 5: 265–276.

    Google Scholar 

  • Kavumpurath, S. & T. J. Pandian, 1993. Production of YY female guppy (Poecilia retictilata) by endocrine sex reversal and selective breeding. Aquaculture 116: 183–189.

    Google Scholar 

  • Kavumpurath, S. & T. J. Pandian, 1994. Induction of heterozygous and homozygous diploid gynogenesis in Betta splendens (Regan) using hydrostatic pressure. Aquacult. Fish. Mgmt. 25: 133–142.

    Google Scholar 

  • Kawamura, T., M. Nishioka & H. Okumoto, 1983. Production of autotetraploids and amphidiploids from auto and allotriploids in Rana nigromaculata and Rana brevipoda. Sci. Rep. Lab Amphibian Biol., Hiroshima Univ. 6: 47–80.

    Google Scholar 

  • Kawamura, K., K. Hosoya & K. Fukusho, 1995. Spermatozoa of artificially induced triploid red sea bream Pagrus major. Fish. Sci. 61: 355–356.

    Google Scholar 

  • Keefe, R. O. & T. J. Benfey, 1995. The production of triploid and sex-reversed Arctic Charr (Salvelinus alpinus). Aquaculture 137: 157.

    Google Scholar 

  • Kim, D. S., I. B. Kim&Y. G. Baik, 1986. A report of triploid rainbow trout production in Korea Bull. Kor. Fish Soc. 19: 575–580.

    Google Scholar 

  • Kim, D. S. & I. S. Park, 1990a. Chromosomal polymorphism of coho salmon, Oncorhynchus kisutch. Kor. J. Icthyol. 2: 211–216.

    Google Scholar 

  • Kim, D. S., G. C. Choi & J. Y. Jo, 1990b. Induced triploid in channel catfish Ictalurus punctatus (Teleostomi: Siluriformes). Kor. J. Genet. 12–13: 229–235.

    Google Scholar 

  • Kim, D. S., J. H. Kim, J. Y. Jo, Y. B. Moon & K. C. Cho, 1993a. Induction of gynogenetic diploid in Paratichthys olivaceus. Kor. J. Genet. 15–3: 179–186.

    Google Scholar 

  • Kim, D. S., C. H. Jeong & I. B. Kim, 1993b. Induction of all-female triploid in rainbow trout (Oncorhynchus mykiss). Kor. J. Genet. 15: 213–218.

    Google Scholar 

  • Kim, D. S., J. Y. Jo & T. Y. Lee, 1994a. Induction of triploidy in mud loach (Misgumus mizolepis) and its effects on gonad development and growth. Aquaculture 120: 263–270.

    Google Scholar 

  • Kim, D. S., Y. B. Moon, C. H. Jeong, D. S. Kim & Y. D. Lee, 1994b. Evaluation of fertility of artificial induced gynogenetic diploid male in Paralichthys ofivaceus. J. Aquacult. 7: 151–158.

    Google Scholar 

  • Kim, D. S., Y. H. Chei, C. H. Noh & Y. K. Nam, 1995a. Production of supermale (YY) arid superfemale (YY) nile tilapia (Oreochromis niloticus) by sex reversal and chromosome manipulation. 1. Induction of gynogenetic diploid from XY female. J. Aquacult. 8: 295–306.

    Google Scholar 

  • Kim, D. S., Y. K. Nam & I. S. Park, 1995b. Survival and karyological analysis of reciprocal diploid and triploid hybrids between mud loach (Misgurnus mizolepis) and cyprinid loach (Misgurnus anguillicaudatus. Aquaculture 135: 257–265.

    Google Scholar 

  • Kirpichnikov, V. S., 1981. Genetic basis of fish selection. Springer, Berlin, 410 pp.

    Google Scholar 

  • Kitamura, S., O. Y. Teong & T. Arakawa, 1991. Gonadal development of artificially induced triploid red sea bream Pagrus major. Nippon Suisan Gakkaishi 57: 1657–1660.

    Google Scholar 

  • Koban, M., G. Graham & C. L. Prosser, 1987. Induction of heat-shock protein synthesis in teleost hepatocytes: Effects of acclimatization temperature. Physiol. Zool. 60: 290–296.

    Google Scholar 

  • Koban, M., A. A. Yup., L. B. Agellon & D. A. Powers, 1991. Molecular adaptation to the thermal environment. Heat-shock response of the eurythermal teleost. Fundulus heteroclitus. Mol. Mar. Biol. Biotechnol. 1: 1–17.

    Google Scholar 

  • Kobayashi, H., 1971. A cytological study on gynogenesis of the triploid ginbuna (Carassius auratus langsdorfii). Zool. Mag. 80: 316–322.

    Google Scholar 

  • Kobayashi, H. & H. Ochi, 1972. Chromosome studies of the hybrids of ginbuna Carassius auratus langsdorfii × Ginbuna C. auratus sub sp. and gibun × loach Misgurnus anguillicaudatus. Zool. Mag. 81: 67–71.

    Google Scholar 

  • Kobayashi, H., Y. Kawashima & N. Takeuchi, 1976. Comparative chromosome studies in the genus Carassius, especially with a finding of polypioid in the ginbuna (Carassius auratus langsdorfii). Japan. J. lcthyol. 17: 153–160.

    Google Scholar 

  • Kohler, M. R., D. Neuhaus, W. Engel, M. Schartl & M. Schmid, 1995. Evidence for an unusual ZW/ZW0/ZZ sex-chromosome system in Scardinius erthyrophthalmus (Pisces, Cyprinidae), as detected by cytogenetic and H-Y antigen analyses. Cytogenet. Cell Genet. 71: 356–362.

    PubMed  Google Scholar 

  • Kojima, K., K. Matsubara, M. Kawashima & T. Kajishima, 1984. Studies on gametogenesis in polyploid ginbuna, Carassius auratus langsdorfii. J. Fac. Sci. Shinshu Univ. 19: 37–52.

    Google Scholar 

  • Komen, J., 1990. Clones of common carp. Doctoral thesis. Agricultural University, Wageningen, The Netherlands, 159 pp.

    Google Scholar 

  • Komen, J. & C. J. J. Richter, 1990. Sex control in carp (Cypritius carpio L.). Rec. Adv. Aquacult. 4: 78–86.

    Google Scholar 

  • Komen, J., J. Duynhouwer, C. J. J. Richter & E. A. Huisman, 1988. Gynogenesis in common carp (Cyprinus carpio L.).1. Effects of genetic manipulation of sexual products and incubation conditions of eggs. Aquaculture 69: 227–239.

    Google Scholar 

  • Komen, J., A. B. J. Bongers, C. J. J. Richter, W. B. van Muiswinkel & E. A. Huisman, 1990a. Gynogenesis in common carp (Cyprinus carpio L.). 11: The production of homozygous gynogenetic clones and and F1 hybrids. Aquaculture 92: 127–142.

    Google Scholar 

  • Komen, J., P. J. M. van den Dohblesteen, W. J. Slierendrecht, W. B. van Muiswinkel, 1990b. Skin grafting in gynogenetic common carp (Cyprinus carpio L.). The development of histocompatible clones. Transplantation 49: 788–793.

    PubMed  Google Scholar 

  • Komen, J., E. H. Eding, A. B. J. Bongers & C. J. J. Richter, 1993. Gynogenesis in common carp (Cyprinus carpio). 4. Growth, phenotypic variation and gonad differentiation in normal and methyitestosterone-treated homozygous clones and F1 hybrids. Aquaculture 1110: 271–280.

    Google Scholar 

  • Kondo, S., S. Sato & M. Tomito, 1989. Induction of androgenetic fancy carp. Rep. Niigata Pref. Inland water Fish. exp. St. 15: 19–23 (in Japanese).

    Google Scholar 

  • Koopman, P., J. Gubbay, N. Vivian, P. Goodfellow & R. Lovell-Badge, 1991. Male development of chromosomally female mice transgenic for Sry. Nature 351: 117–121.

    PubMed  Google Scholar 

  • Koteeswaran, R., 1994. Gonadal steroidogenesis in triploid male tilapia. M. Sc., Dissertation, Madurai Kamaraj University, Madurai, India, 33 pp.

    Google Scholar 

  • Koteeswaran, R., S. G. Sheela & T. J. Pandian, 1995. Testosterone biosynthesis in triploid sterile male tilapia. Curr. Sci. 69: 545–547.

    Google Scholar 

  • Krasznai, Z. & T. Marian, 1986. Shock induced triploidy and its effect on growth and gonad development of the European catfish, Silurus glanis L. J. Fish Biol. 29: 519–527.

    Google Scholar 

  • Kurita, J., M. Sakaizumi & F. Takashima, 1992. Production of trigenomic allotriploid medaka Oryzias fates sinensis-cutvinotus-celebensis. Nippon Suisan Gakkaishi. 58: 2311–2314.

    Google Scholar 

  • Kurita, J., T. Oshiro, F. Takashima & M. Sakaizumi, 1995. Cyto'-genetic studies on diploid and triploid oogenesis in interspecific hybrid fish between Oryzias latipes and O. curvinol. J. exp. Zool. 273: 234–241.

    Google Scholar 

  • Kusunoki, T., K. Arai & R. Suzuki, 1994a. Production of viable gynogens without chromosome duplication in the spinous loach, Cobitis biwae Aquaculture 119: 11–23.

    Google Scholar 

  • Kusunoki, T., K. Arai & R. Suzuki, 1994b. Viability and karyotypes of interracial and intergeneric hybrids in loach species. Fish. Sci. 60: 415–422.

    Google Scholar 

  • Kutty, M. N., 1972. Respiratory quotient and ammonia excretion in Tilapia mossambica. Mar. Biol. 16: 126–133.

    Google Scholar 

  • Lee, Y. M., I. C. Cheong, S. B. Chung & H. Y. Park, 1991. The study on the induction of triploid in Korean native catfish (Parasilurus asotus). Res. Rept. RDA 33: 21–32.

    Google Scholar 

  • Lemoine, Jr., H. L. & L. T. Smith, 1980. Polypioidy induced in brook trout by cold shock. Trans. am. Fish. Soc. 109: 626–631.

    Google Scholar 

  • Lin, F. & K. Dabrowski, 1995. Induction of gynogenesis in kellunge (Esox masquinongy). Aquaculture 137: 153–154.

    Google Scholar 

  • Lincoln, R. F., 1981a. The growth of female diploid and triploid plaice (Pleuronectes platessa) × flounder (Platichthys flesus) hybrids over one spawning season. Aquaculture 25: 259–268.

    Google Scholar 

  • Lincoln, R. F., 1981b. Sexual maturation in triploid male plaice (Pleuronectes platessa) and plaice × flounder (Platichthys flesus) hybrids. J. Fish Biol. 19: 415–426.

    Google Scholar 

  • Lincoln, R. F. & A. P. Scott, 1983. Production of all-female triploid rainbow trout. Aquaculture 30: 375–380.

    Google Scholar 

  • Lincoln, R. F. & A. P. Scott, 1984. Sexual maturation in triploid rainbow trout Salmo gaidneri Richardson. J. Fish Biol. 25: 345–351.

    Google Scholar 

  • Linhart, O., M. Flajshans & P. Kvasnicka, 1991. Induced triploidy in the common carp (Gyprinus cirpio L.): a comparison of two methods. Aquat. living Res. 4: 139–145.

    Google Scholar 

  • Linhart, O. & M. Flajshans, 1995. Triploidization of European catfish Silurus glanis L. by heat shock. Aquacult. Res. 26: 367–370.

    Google Scholar 

  • Linhart, O., P. Kvasnicka, V. Slechtova & I. Pokorny, 1986. Induced gynogenesis by retention of the second polar body in the common carp, Cyprinus carpio L., and heterozygosity of gynogenetic progeny in transferrin and Ldh-B' loci. Aquaculture 54: 63–67.

    Google Scholar 

  • Linhart, O., P. Kvasnicka, M. Fiajshans, A. Kasal, P. Rab, J. Palecek, V. Slechta, J. Hamackova & M. Prokes, 1995. Genetic studies with tench. Tinca tinca L.: induced meiotic gynogenesis and sex reversal. Aquaculture 132: 239–251.

    Google Scholar 

  • Lou, Y. D. & C. E. Purdom, 1984. Polypioidy induced by hydrostatic pressure in rainbow trout Salmo gairdneri Richardson. J. Fish. Biol. 25: 345–351.

    Google Scholar 

  • Lowe, T. P. & J. R. Larkin, 1975. Sex reversal in Betta splendens (Regan) with emphasis on the problem of sex determination. J. exp. Zool. 191: 25–32.

    PubMed  Google Scholar 

  • Lu, R. & H. Chen, 1993. Advances in fish cell engineering in China. Aquaculture 111: 41–50.

    Google Scholar 

  • Mair, G. C., A. G. Scott, D. J. Penman, D. O. F. Skibinski & J. A. Beardmore, 1991. Sex determination in the genus Oreochromis: 1. Sex reversal, hybridization, gynogenesis and triploidy in 0. aureus Steindachner. Theor. appl. Genet. 82: 153–160.

    Google Scholar 

  • Malison, J. A., T. B. Kayes, J. A. Held, T. P. Barry & C. H. Amundson, 1993a. Manipulation of ploidy in yellow perch (Perca flavescens) by heat shock, hydrostatic pressure shock and spermatozoa inactivation. Aquaculture 110: 229–242.

    Google Scholar 

  • Malison, J. A., L. S. Procarione, J. A. Held, T. B. Kayes & C. H. Amundson, 1993b. The influence of triploidy and heat and hydrostatic pressure shocks on the growth and reproductive development of juvenile yellow perch (Perca flavescens). Aquaculture 116: 121–133.

    Google Scholar 

  • Manickam, P., 1991. Triploidy induced by cold shock in the Asian catfish Clarias batrachus (L.). Aquaculture 94: 377–379.

    Google Scholar 

  • Mantelman, I. I., 1969. On the possibility of polyspermy in bony fishes. Dokl. Acad. Nauk SSSR Biol. Sci. 189: 820–823.

    Google Scholar 

  • Marian, L. A. & T. J. Pandian, 1992. Ploidy induction as a method for monosex production of fish. Biol. Edu. 9: 5–11.

    Google Scholar 

  • Masaoka, T., K. Arai & R. Suzuki, 1995. Production of androgenetic diploid loach, Misgumus anguillicaudatus from UV irradiated eggs by suppression of the first cleavage. Fish. Sci. 61: 716–717.

    Google Scholar 

  • Matsubara, K., K. Arai & R. Suzuki, 1995. Survival potential and chromosomes of progeny of triptoid and pentaploid females in the loach Misgurnus anguillicaudatus. Aquaculture 131: 37–48.

    Google Scholar 

  • May, B., K. J. Henley, C. C. Krueger & S. P. Gless, 1988. Androgenesis as a mechanism for chromosome set manipulation in brook trout (Salvelinus fontinalis). Aquaculture 75: 57–70.

    Google Scholar 

  • Mayr, B., P. Rab & M. Kalat, 1986, Localization of NORs and counterstain enhanced fluorescence studies in Salmo gairdneri (Pisces, Salmonidae). Theor. appl. Genet. 71: 703–707.

    Google Scholar 

  • Mayr, B., M. Kalat & P. Rab, 1988. Heterochromatin and band karyotypes in three species of salmonids. Theor. appl. Genet. 76: 45–53.

    Google Scholar 

  • McKay, L. R., P. E. Ihssen & I. McMillan, 1992. Growth and mortality of diploid and triploid tiger trout (Salmo trutta × Salvelinus Cons. Aquaculture 106: 239–251.

    Google Scholar 

  • Miller, K. W., W. D. M. Paton, E. B. Smith & R. A. Smith, 1972. Physiochemical approaches to the mode of action of general anaesthetics. Anesthesiology 36: 339–357.

    PubMed  Google Scholar 

  • Mirza, J. A. & W. Sheiton, 1988. Induction of gynogenesis and sex reversal in silver carp. Aquaculture 68: 1–14.

    Google Scholar 

  • Moenkhaus, W. J., 1904. The development of the hybrids between Fundulus heteroclitus and Menidia notata with special reference to the behaviour of the maternal and paternal chromatin. Am. J. Anat. 3: 29–66.

    Google Scholar 

  • Morescalchi, A., 1992. Chromosomes, sex determination and environment in teleosteans. In R. Dailai (ed.), Sex Origin and Evolution. Mucchi, Modena: 137–149.

    Google Scholar 

  • Monaco, P. J., E. M. Rasch & J. S. Balsano, 1978. Cytogenetical evidence for temporal differences during the asynchronous ovarian maturation of bisexual and unisexual fishes of the genus Poecilia. J. Fish Biol. 13: 33–34.

    Google Scholar 

  • Monaco P.J., E.M. Rasch & J.S. Balsa 1984. Apomictic reproduction in the Amazon molly Poecilia formosa and its triploid hybrids. In B. J. Turnered. Evolutionary Genetics of Fishes. Plenum Publishing Corp. New York 311–328.

    Google Scholar 

  • Morell, V., 1993. Dino DNA: The hunt and the hype. Science 261: 160–162.

    PubMed  Google Scholar 

  • Muller, H. J., 1925. Why polypioid is rarer in animals than in plants. Am. Nat. 59: 346–353.

    Google Scholar 

  • Myers, J. M., 1986. Tetraploidy induction in Oreochromis species. Aquaculture 57: 281–287.

    Google Scholar 

  • Myers, J. M., D. J. Penman, J. K. Rana, N. Bromage, S. F. Powell & B. J. McAndrew, 1995. Applications of induced androgenesis with tilapia. Aquaculture 137: 150.

    Google Scholar 

  • Nagao, R. T., J. A. Kimpel & J. L. Key, 1990. Molecular and cellular biology of heat shock response. Adv. Genet. 28: 235–274.

    PubMed  Google Scholar 

  • Nagoya, H., T. Kimoto & H. Onozato, 1990. Diploid gynogenesis induced by suppression of the second or the third cleavage in the goldfish, Carassius auratus. Bull. nat. Res. Inst. Aquaculture 18: 1–6.

    Google Scholar 

  • Nagy, A. & V. Csanyi, 1984., A new breeding system using gynogenesis and sex reversal for fast inbreeding in carp. Theor. appl. Genet. 67: 485–490.

    Google Scholar 

  • Nakamura, M., F. Tsuchiya, M. lsahashi & Y. Nagahama, 1993. Reproductive characteristics of precociously mature triploid male masou salmon, Oncorhynchus masou. Zool. Sci. 10: 117–125.

    Google Scholar 

  • Na-Nakorn, U., W. Rangsin & S. Witchasunscul, 1993. Suitable conditions for induction of gynogenesis in the catfish, Clarias macrocephalus, using sperm of Pangasius sutchi. Aquaculture 118: 53–62.

    Google Scholar 

  • Na-Nakorn, V., 1995. Comparision of cold and heat shocks to induce diploid gynogenesis in Thai walking catfish (Clarias macrocephalus) and performances of gynogens. Aquat. Living Res. 8: 333–341.

    Google Scholar 

  • Nanda, I., W. Feichtinger, M. Schmid, J. H. Schroder, H. Zischier & J. T. Epplen, 1990. Simple repetitive sequences are associated with differentiation of the sex chromosomes in the guppy fish. J. molec. Evol. 30: 456–462.

    Google Scholar 

  • Naruse, K., K. ljiri, A. Shima & N. Egami, 1985. The production of cloned fish in the medaka (Oryzias latipes). J. exp. Zool. 236: 335–341.

    PubMed  Google Scholar 

  • Nilsson, E. C. & J. G. Cloud, 1993. Extent of mosaicism in experimentally produced diploid/triploid chimeric trout. J. exp. Zool. 266: 47–50.

    Google Scholar 

  • Ohno, S., 1967. Sex chromosomes and sex-linked genes. Springer, Berlin.

    Google Scholar 

  • Ohno, S., 1974. Animal cytogenetics, 4: Chordata. 1. Protochordata, Cyclostomata and Pisces, Gebruder Borndraegeir, Berlin.

    Google Scholar 

  • Ohno, S. & N. B. Atkin, 1966. Comparative DNA values and chromosome complements of eight species of fishes. Chromosoma 18: 455–466.

    PubMed  Google Scholar 

  • Ojima, Y. & S. M. J. A. Makino, 1978. Triploidy induced by cold shock in fertilized eggs of the carp. Proc. Japan Acad. 54B: 359–362.

    Google Scholar 

  • Ojima, Y. & A. Takai, 1979. The occurrence of spontaneous polyptoidy in the Japanese common loach, Misgumus anguillicaudatus. Proc. Japan Acad. 55B: 487–491.

    Google Scholar 

  • Ojima, Y., 1983. Fish cytogenetics. In A. K. Sharma & A. Sharma (eds), Chromosomes in Evolution of Eukaryotic Groups, CRC Press, Boca Raton, 145 pp.

    Google Scholar 

  • Ojolick, E. J., R. Cusack, T. J. Benfey & S. R. Kerr, 1995. Survival and growth of all-female diploid and triploid rainbow trout (Oncorhynchus mykiss) reared at chronic high temperature. Aquaculture. 131: 177–187.

    Google Scholar 

  • Oliva-Teles, A. & S. J. Kaushik, 1987a. Nitrogen and energy metabolism during the early ontogeny of diploid and triploid rainbow trout (Salmo gairdneri R.). Comp. Biochem. Physiol. 87A: 157–160.

    Google Scholar 

  • Oliva-Teles, A. & S. J. Kaushik, 1987b. Metabolic utilization of diets by polypioid rainbow trout (Salmo gairdneri R.). Comp. Biochem. Physiol. 88A: 45–47.

    Google Scholar 

  • Oliva-Teles, A. & S. J. Kaushik, 1990. Growth and nutrient utilization by 0+ and 1+ triploid rainbow trout, Oncorhynchus mykiss. J. Fish Biol. 37: 125–133.

    Google Scholar 

  • Ollermann, L. K. & P. H. Skelton, 1990. Hexaploidy in yellowfish species (Barbus, Pisces, Cyprinidae) from Southern Africa. J. Fish Biol. 37: 105–115.

    Google Scholar 

  • Onozato, H., 1984. Diploidization of gynogenetically activated salmonid eggs using hydrostatic pressure. Aquaculture 43: 91–97.

    Google Scholar 

  • Oshiro, T., 1987. Cytological studies on diploid gynogenesis induced in the loach Misgurnus anguillicaudatus. Bull. J. Soc. Sci. Fish. 53: 933–942.

    Google Scholar 

  • Oshiro, T., Y. Deng, S. Higaki & F. Takashima, 1991. Growth and survival of diploid and triploid hybrids of masu salmon, Oncorhynchus masou. Nippon Suisan Gakkaishi 57: 1851–1857.

    Google Scholar 

  • Oppermann, K., 1913. Die Entwickfung von Forelloneiern nach Befruchtung mit radiumbestrahiten Samenfaden. Arch. mikrosk. Anat. 83: 141–189.

    Google Scholar 

  • Pandian, T. J., 1993. Endocrine and chromosome manipulation techniques for the production of all-male and all-female population in food and ornamental fishes. Proc. Ind. nat. Sci. Acad. 59B: 549–566.

    Google Scholar 

  • Pandian, T. J., 1998. Sex determination and differentiation in Teleosts. Proc. Silver Jubilee celebration (in press). College of Fisheries, Mangalore, India.

    Google Scholar 

  • Pandian, T. J. & K. Varadaraj, 1987. Techniques to regulate sex ratio and breeding in tilapia. Cur. Sci. 56: 337–343.

    Google Scholar 

  • Pandian, T. J.& K. Varadaraj, 1988a. Sterile female triploidy in Oreochromis mossambicus. Bull. Aquacult. Ass. Canada 88: 134–135.

    Google Scholar 

  • Pandian, T. J. & K. Varadaraj, 1988b. Techniques for producing all-male and alltriploid Oreochromis mossambicus. In R. S. V. Pullin, T. Bhukuswan, K. Tonguthai & J. L. Maclean (eds), Tilapia in Aquaculture, ICLARM Conf. Proc., Bangkok: 243–249.

  • Pandian, T. J. & K. Varadaraj, 1990a. The development of monosex female Oreochromis mossambicus, broodstock by integrating gynogentic technique with endocrine sex reversal. J. exp. Zool. 255: 88–96.

    Google Scholar 

  • Pandian, T. J. & K. Varadaraj, 1990b. Techniques to produce 100% male tilapia. Naga (ICLARM), 13: 3–5.

    Google Scholar 

  • Pandian, T. J. & L. A. Marian, 1994. Problems and prospects of transgenic fish production. Cur. Sci. 66: 635–649.

    Google Scholar 

  • Pandian, T. J. & S. G. Sheela, 1995. Hormonal induction of sex reversal. Aquaculture 138: 1–22.

    Google Scholar 

  • Pandey, N. & W. S. Lakra, 1997. Evidence of female heterogamety, Bchromosome and natural tetraploidy in the Asian catfish, Clarias batrachus, used in aquaculture. Aquaculture 149: 31–38.

    Google Scholar 

  • Park, ln. S., H. B. Kim, Son & D. S. Kim, 1994. Triploidy production of Red sea bream, Pagrus major. Kor. J. lcthyol. 6: 71–78.

    Google Scholar 

  • Parsons, G. R., 1993. Comparison of diploid and triploid white crappies (Phoximus annularis). Trans. am. Fish. Soc. 122: 237–243.

    Google Scholar 

  • Parsons, J. E. & G. H. Thorgaard, 1984. Induced androgenesis in rainbow trout. J. exp. Zool. 231: 407–412.

    Google Scholar 

  • Parsons, J. E. & G. H. Thorgaard, 1985. Production of androgenetic diploid rainbow rout. J. Hered. 76: 177–181.

    PubMed  Google Scholar 

  • Parsons, J. E., R. A. Busch, G. H. Thorgaard & P. D. Scheerer, 1986. Increased resistance of triploid rainbow trout × coho salmon hybrids to infectious hematopoietic necrosis virus. Aquaculture 57: 337–343.

    Google Scholar 

  • Pechan, P., S. S. Wachtel & R. Reinboth, 1979. H-Y antigen in the teleost. Differentiation 14: 189–192.

    PubMed  Google Scholar 

  • Penman, D. J., O. F. Skibinski & J. A. Beardmore, 1987. Survival, growth rate and maturity in triploid tilapia. In K. Tiews (ed.), Selection, Hybridization and Genetic Engineering in Aquaculture. Bordeaux, Heenemann, Berlin 2: 277–288.

    Google Scholar 

  • Peruzzi, S., A. G. Scott, C. J. Domaniewski & G. F. Warner, 1993. Initiation of gynogenesis in Oreochromis niloticus following heterologous fertilization. J. Fish Biol. 43: 585–591.

    Google Scholar 

  • Phillips, R. B., K. D. Zajicek, P. E. lhssen & O. Johnson, 1986. Application of silver staining to the identification of triploid fish cells. Aquaculture 54: 313–319.

    Google Scholar 

  • Phillips, R. B., K. A. Pleyte & P. E. Ihssen, 1989. Patterns of chromosomal nucleolar organizer region (NOR) variation in fishes of the genus Salvelinus. Copeia 1: 47–53.

    Google Scholar 

  • Piferrer, F., T. J. Benfey & E. M. Donaldson, 1994a. Production of female triploid coho salmon (Oncorhynchus kisutch) by pressure shock and direct estrogen treatment. Aquat. living Res. 7: 127–131.

    Google Scholar 

  • Piferrer, F., T. J. Benfey & E. M. Donaldson, 1994b. Gonadal morphology of normal and sex reversed triploid and gynogenetic diploid coho salmon (Oncorhynchus kisutch). J. Fish Biol. 45: 541–553.

    Google Scholar 

  • Piferrer, F., S. Zanuy, M. Carrillo, I. I. Solar, R. H. Devlin & E. M. Donaldson, 1994c. Brief treatment with an aromatase inhibitor during sex differentiation causes hormonally female salmon to develop as normal, functional males. J. exp. Zool. 270: 255–262.

    Google Scholar 

  • Pongthana, N., D. J. Penman, J. Karnasuta & B. J. McAndrew, 1995. Induced gynogenesis in the silver barb (Puntius gonionotus Bleeker) and evidence for female homogamety. Aquaculture 135: 267–271.

    Google Scholar 

  • Purdom, C. E., 1969. Radiation-induced gynogenesis and androgenesis in fish. Heredity 24: 431–444.

    PubMed  Google Scholar 

  • Purdom, C. E., 1983. Genetic engineering by the manipulation of chromosomes. Aquaculture 33: 287–300.

    Article  Google Scholar 

  • Purdom, C. E. & R. F. Lincoln, 1973. Chromosome manipulation in fish. In J. Schroder (ed.), ‘Genetics and Mutagenesis of Fish', Springer, Berlin: 83–39.

    Google Scholar 

  • Purdom, C. E., D. Tliorlipson & Y. D. Lou, 1985. Genetic engineering in rainbow trout, Salmo gairdneri Richardson, by the suppression of meiotic and mitotic metaphase. J. Fish Biol. 27: 73–79.

    Google Scholar 

  • Quillet, E., 1994. Survival, growth and reproductive traits of mitotic gynogenetic rainbow trout females. Aquaculture, 123: 223–236.

    Google Scholar 

  • Quillet, E.& J. L. Gaignon, 1990. Thermal induction of gynogenesis and triploidy in Atlantic salmon (Salmo salar) and their potential interest for aquaculture. Aquaculture 89: 351–364.

    Google Scholar 

  • Quillet, E., B. Chevassus & F. Krieg, 1987. Characterization of auto-and allotriploid salmonids for rearing in seawater cages. In K. Tiews (ed.), Selection, Hybridization and Genetic Engineering in Aquaculture, Bordeaux, Heenemann, Berlin 2: 239–252.

    Google Scholar 

  • Quillet, E., B. Chevassus, J. M. Blanc, F. Krieg & D. Chourrout, 1988a. Performances of auto and allotriploids in salmonids. Survival and growth in freshwater farming. Aquat. living Res. 1: 29–43.

    Google Scholar 

  • Quillet, E., B. Chevassus & A. Devausx, 1988b. Timing and duration of hatching in gynogenetic, triploid, tetraploid and hybrid progenies in rainbow trout. Genet. Sel. Evol. 20: 199–210.

    Google Scholar 

  • Raicu, P. & E. Taisescu, 1972. Misgurnus fossilis: a tetraploid fish species. J. Hered. 63: 92–94.

    Google Scholar 

  • Rasch, E. M., P. J. Monaco & J. S. Balsano, 1982. Cytomorphic and autoradiographic evidence for functional apoinixis in a gynogenetic fish Poecilia formosa and its related triploid unisexuals. Histochemistry 73: 515–533.

    PubMed  Google Scholar 

  • Rasch, E. M. & J. S. Balsano, 1989. Trihybrids related to the unisexual molly fish Poecilia formosa. In R. M. Dawley & J. P. Bogart (eds), Evolution and Ecology of Unisexual Vertebrates. NewYork State Mus. Bull. 466: 252–267.

    Google Scholar 

  • Recoubratsky, A. V., B. I. Gomelsky, O. V. Emelyanova & E. V. Pankratyeva, 1992. Triploid common carp produced by heat shock with industrial fish farm technology. Aquaculture 108: 13–19.

    Google Scholar 

  • Reftsie, T., 1981. Tetraploid rainbow trout produced by cytochalasin B. Aquaculture 25: 51–58.

    Google Scholar 

  • Reftsie, T., V. Vassvik & T. Gjedrem, 1977. Induction of polypfoidy in salmonids by cytochalasin B. Aquaculture 10: 65–74.

    Google Scholar 

  • Reftsie, T., J. Stoss & E. M. Donaldson, 1982. Production of all-female coho salmon (Oncorhynchus kisutch) diploid gynogenesis using irradiated sperm and cold shock. Aquaculture 29: 67–82.

    Google Scholar 

  • Reider, C. L. & A. S. Bajer, 1978. Effect of elevated temperature on spindle microtubuies and chromosome movement in cultured newt lung cells. Cytobios 18: 201–234.

    PubMed  Google Scholar 

  • Richter, C. J. J., A. M. Henken, E. H. Eding, J. H. Doesum & P. Boer, 1986. Induction of triploidy by cold-shocking eggs and performance of triploids in the African catfish, Clarias gariepinus (Burchell, 1822). In K. Tiews (ed.), Selection, Hybridization and Genetic Engineering in Aquaculture. Bordeaux, Heenemann, Berlin 2: 225–237.

    Google Scholar 

  • Rishi, K. K., 1989. Current status of fish cytogenetics. In P. Das & A. G. Jhingran (eds), Fish Genetics in India. Today and Tomorrow Publishers, New Delhi: 1–20.

    Google Scholar 

  • Romashov, D. D. & V. N. Belyaeva, 1964. Cytology of radiation gynogenesis and androgenesis in the loach. Dokl. Akad. Nauk SSSR 157: 964–1996.

    PubMed  Google Scholar 

  • Romashov, D. D. & V. N. Belyaeva, 1965. Increased yield of diploid gynogenetic larvae of the loach (Misgurnus fossilis L.) induced by temperature shock. Bull. Mosk. Oovalspyt. Prir. Old. Biol. 70: 93–109.

    Google Scholar 

  • Rothbard, S., W. L. Sheiton, Z. Kulikovsky, Y. Hagan & B. Moav, 1995. Chromosome set manipulation in the black carp, Myopharyngodon piceus. Aquaculture 137: 156–157.

    Google Scholar 

  • Roush, W., 1996. Sperm protein makes its mark upon the worm embryo. Science 271: 33.

    PubMed  Google Scholar 

  • Sakaizumi, M., Y. Shimizu, T. Matsuzaki & S. Hamaguchi, 1993. Unreduced diploid eggs produced by interspecific hybrids between Oryzias latipes and O. curvinotus. J. exp. Zool. 266: 312–318.

    Google Scholar 

  • Satoh, S., M. Tomitam, M. Iwahashi & M. Nakamura, 1991. Reproduction of triploid tilapia, Oreochromis niloticus. Sci. Rep. Niigata Perfecture Inland Water Fish 42: 1–5 (in Japanese).

    Google Scholar 

  • Scheerer, P. D. & G. H. Thorgaard, 1983. Increased survival in salmonid hybrids by induced triploidy. Can. J. Fish. aquat. Sci. 40: 2040–2044.

    Google Scholar 

  • Scheerer, P. D., G. H. Thorgaard, F. W. Allendorf & K. L. Knudsen, 1986. Androgenetic rainbow trout produced from inbred and outbred sperm sources show similar survival. Aquaculture 57: 289–298.

    Google Scholar 

  • Scheerer, P. D., G. H. Thorgaard & F. W. Allendorf, 1991. Genetic analysis of androgenetic rainbow trout. J. exp. Zool. 260: 382–390.

    PubMed  Google Scholar 

  • Schmid, M., C. Steinlein, W. Feichtinger & M. Poot, 1993. Chromosome banding in amphibia. Cytogenet. Cell Genet. 62: 42–48.

    PubMed  Google Scholar 

  • Schultz, 1961. Reproductive mechanism of unisexual and bisexual strains of the viviparous fish Poecitopsis. Evolution 15: 302–325.

    Google Scholar 

  • Schultz, R. J., 1967. Gynogenesis and triploidy in the viviparous fish Poecilopsis. Science 157: 1564–1567.

    PubMed  Google Scholar 

  • Schultz, J., 1969. Hybridization, unisexuality and polypioidy in the teleost Poecilopsis (Poeciliidae) and other vertebrates. Am. Nat. 103: 605–619.

    Google Scholar 

  • Schultz, R. J., 1973. Unisexual fish: Laboratory synthesis of a 'species'. Science 179: 180–181.

    PubMed  Google Scholar 

  • Schultz, J., 1989. Origin and relationships of unisexual poeciliids. In G. K. Meffe & F. F. Snelson (eds), Evolution of Live-bearing Fishes (Poeciliidae). Prentice Hall: 69–87.

  • Schwark, G. H., 1993. Production of homozygous diploid zebrafish (Brachydanio rerio). Aquaculture 112: 25–37.

    Google Scholar 

  • Scott, A. G., D. J. Penman, J. A. Beardmore & D. O. F. Skibinski, 1989. The ‘YY’ supermale in Oreochromis niloticus and its potential for aquaculture. Aquaculture 28: 237–251.

    Google Scholar 

  • Seeb, J. E., G. H. Thorgaard & F. M. Utter, 1988. Survival and allozyme expression in diploid and triploid hybrids between chum, chinook and coho salmon. Aquaculture 72: 31–46.

    Google Scholar 

  • Seeb, J. E., G. H. Thorgaard & T. Tynan, 1993. Triploid hybrids between chum salmon female × chinook salmon male have early sea-water tolerance. Aquaculture 117: 37–45.

    Google Scholar 

  • Sezaki, K. & H. Kobayashi, 1986. Comparison of erythrocytic size between Cobitis biwae. Bull. Jap. Soc. Sci. Fish. 44: 851–854.

    Google Scholar 

  • Sezaki, K., S. Watanabe & K. Hashimoto, 1983. A comparision of chemical composition between diploids and triploids of ‘Ginbuna’ Carassius auratus langsdorfii. Bull. Jap. Soc. Sci. Fish. 49: 97–101.

    Google Scholar 

  • Sezaki, K., S. Watabe, K. Tsukamoto & K. Hashimoto, 1991. Effects of increase in ploidy status on respiratory function of gibuna Carassius auratus langdorfii (Cyprinidae). Comp. Biochem. Physiol. 99A: 123–127.

    Google Scholar 

  • Shah, M. S., 1988. Female homogamety in tilapia (Oreochromis niloticus) revealed by gynogenesis. J. asian Fish. Sci. 1: 215–219.

    Google Scholar 

  • Shalev, A. & E. Huebner, 1980. Expression of H-Y antigen in the guppy (Lebistes reticulatus). Differentiation 16: 81–83.

    PubMed  Google Scholar 

  • Shapiro, D. Y., 1987. Differentiation and evolution of sex change in fishes. Bio Science 37: 490–497.

    Google Scholar 

  • Sheiton, C. J., A. G. MacDonald & R. Johnstone, 1986. Induction of triploidy in rainbow trout using nitrous oxide. Aquaculture 58: 155–159.

    Google Scholar 

  • Shen, J. B., C. R. Wang & Z. T. Fan, 1983. The ploidy of crucian carp and its geographical distribution in Heilongjiang main river. J. Fish China 7: 87–94.

    Google Scholar 

  • Simon, R. C., 1964. Fixation and fat extraction before staining and squashing for chromosomes of fish embryos. Stain Technol. 39: 45–57.

    PubMed  Google Scholar 

  • Siraj, S. S., S. Seki, A. K. Jee & Y. Yamada, 1993. Diploid gynogenesis in Pampan Jawa Puntius gonionotus using UV irradiated sperm of Puntius schwanenfeldii. Nippon Suisan Gakkaishi 59: 957–692.

    Google Scholar 

  • Small, S. A. & T. J. Benfey, 1987. Cell size in triploid salmon. J. exp. Zool. 241: 339–342.

    Google Scholar 

  • Smith, L. T. & H. L. Lemoine, 1979. Colchicine induced polyploidy in brook trout. Progr. Fish Cult. 41: 311–319.

    Google Scholar 

  • Sola, L., R. Arcangeli & S. Cataudelia, 1986. Nucleolus organizer chromosomes in a teleostean species of tetraploid origin, Cypritius carpio. Cytogenet. Cell Genet. 42: 183–186.

    Google Scholar 

  • Sola, L., P. J. Monaco & E. M. Rasch, 1990. Cytogenetics of bisexuallunisexual species of Poecilia. Cytogenet. Cell Genet. 53: 148–154.

    PubMed  Google Scholar 

  • Sola, L., O. Cipelli, E. Gornung, A. R. Rossi, F. Andaloro & D. Crosetti, 1997. Cytogenetic characterization of the great amberjack, Seriela dumerili (Pisces: Carangidae), by different staining techniques and fluorescence in situ hybridization. Mar. Biol. 128: 573–577.

    Google Scholar 

  • Solar, I., E. M. Donaldson & G. A. Hunter, 1984. Induction of triploidy in rainbow trout (Salmo gairdneri Richardson) by heat shock, and investigation of early growth. Aquaculture 42: 57–67.

    Google Scholar 

  • Solari, A. J., 1993. Sex chromosomes and sex determination in fishes. In A. J. Solari (ed.), Sex Chromosomes and Sex Determination in Vertebrates. CRC Press, Boca Raton, London: 233–247.

    Google Scholar 

  • Stanley, J. G., 1976. Female homogamety in grass carp (Ctenopharhyngodon idella) determined by gynogenesis. J. Fish. Res. Bd Can. 33: 1372–1734.

    Google Scholar 

  • Stanley, J. G., 1981. Manipulation of developmental events to produce monosex and sterile fish. Rapp. P. v. Reun. Cons. int. Explor. Mer. 178: 485–491.

    Google Scholar 

  • Stanley, J. G., 1983. Gene expression in haploid embryos of Atlantic salmon. J. Hered. 74: 19–22.

    Google Scholar 

  • Stanley, J. G. & J. B. Jones, 1976. Morphology of androgenetic and gynogenetic grass carp, Ctenopharyngodon idella (Valenciennes). J. Fish Biol. 9: 523–528.

    Google Scholar 

  • Stoss, J., 1983. Fish gamete preservation and spermatozoan physiology. In W. S. Hoar, D. J. Randall & E. M. Donaldson (eds), Fish physiology, Academic Press, New York, 9B: 405–434.

    Google Scholar 

  • Streisinger, G., C. Walker, N. Dower, D. Knauber & F. Singer, 1981. Production of clones of homozygous diploid zebrafish (Brachydanio rerio). Nature 291: 293–296.

    PubMed  Google Scholar 

  • Strelkov, L. A., N. Gauze & K. A. Kafiai, 1976. Transcription of ribosomal genes in embryos with different degrees of ploidy. Mol. Biol. (Moscow) 10: 107.

    Google Scholar 

  • Strommen, C. A., E. M. Rasch & J. S. Balsano, 1975. Cytometric studies of Poecilia (Pisces). Cytophotometric evidence for the production of fertile offspring by triploids related to Poecilia formosa. J. Fish Biol. 7: 667–676.

    Google Scholar 

  • Strussman, C. A., B. Ng. Choon, F. Takashima & T. Oshiro, 1993. Triploidy induction in an atherinid fish, the pejerry (Odontesthes bonariensis). Progr. Fish Cult. 55: 83–89.

    Google Scholar 

  • Sugama, K., N. Taniguchi, S. Seki & H. Nabeshinia, 1992. Survival, growth and gonad development of triploid red seabream, Pagrus major (Temminck et Schlegel): Use of allozyme markers for ploidy and family identification. Aquacult. Fish. Mgmt 23: 149–159.

    Google Scholar 

  • Sumantantinda, K., N. Taniguchi & K. Sugama, 1990. The necessary conditions and the use of ultraviolet irradiated sperm from different species to induce gynogenesis of Indonesian common carp. Second Asian Fish. Forum, Asian Fish. Soc., Manila, Philippines: 539–542.

    Google Scholar 

  • Sutterlin, A. M., J. Holder & T. J. Benfey, 1987. Early survival rates and subsequent morphological abnormalities in land locked, anadromous and hybrid (landlocked × anadromous) diploid and triploid Atlantic salmon. Aquaculture 64: 157–164.

    Google Scholar 

  • Suwa, M., K. Arai & R. Suzuki, 1994. Suppression of the first cleavage and cytogenetic studies on the gynogenetic loach. Fish. Sci. 60: 673–681.

    Google Scholar 

  • Suzuki, R., T. Nakanishi & T. Oshiio, 1935a. Survival, growth and sterility of induced triploids in the cyprinid loach, Misgurnus anguillicaudatus. Bull. jap. Soc. Sci. Fish. 51: 889–894.

    Google Scholar 

  • Suzuki, R., T. Oshiro & T. Nakanishi, 1985b. Survival, growth and fertility of gynogenetic diploids induced in the cyprinid loach, Misgurnus anguillicaudatus. Aquaculture 48: 45–55.

    Google Scholar 

  • Swarup, H., 1956. Production of heteroploidy in the three-spined stickle back (Gasterosteus aculeatus L.). Nature 178: 1124–1125.

    Google Scholar 

  • Swarup, H., 1959a. Production of triploidy in Gasterosteus aculeatus (L.). J. Genet. 56: 129–141.

    Google Scholar 

  • Swarup, H., 1959b. Effect of triploidy on the body size. General organisation and cellular structure in Gasterosteus oculeatus (L). J. Genet. 56: 141–155.

    Google Scholar 

  • Tabata, K., 1991 a. Application of chromosomal manipulation in aquaculture of hirame, Paralichthys olivaceus. Bull. Kyogo Pref. Fish. Exp. 28: 1–134.

    Google Scholar 

  • Tabata, K., 1991 b. Induction of gynogenetic diploid males and presumption of sex determination mechanisms in the hirame Paralichthys olivaceus. Nippon suisan Gakkaishi 57: 845–850.

    Google Scholar 

  • Tabata, K., 1995. Reduction of female proportion in lower growing fish separated from normal and feminized seedlings of Hirame, Paralichthys olivaceus. Fish. Sci. 61: 199–201.

    Google Scholar 

  • Taniguchi, N., A. Kijima, T. Tamura, K. Takegami & I. Yamasaki, 1986. Color, growth and maturation in ploidy-manipulated fancy carp. Aquaculture 57: 321–328.

    Google Scholar 

  • Taniguchi, N., S. Seki, J. Fukai & A. Kijima, 1988. Induction of two types of gynogenetic diploids by hydrostatic pressure shock and verification of genetic marker in ayu. Nippon Suisan Gakkaishi 54: 1483–1491.

    Google Scholar 

  • Taniguchi, N., H. Hatanaka & S. Seki, 1990. Genetic variation in quantitative characters of meiotic and mitotic — gynogenetic diploid ayu, Plecoglossus altivelis. Aquaculture 85: 223–233.

    Google Scholar 

  • Taniguchi, N., H. S. Han & A. Tsujimura, 1994. Variation in some quantitative traits of clones produced by chromosome manipulation in ayu, Plecogiossus altivelis. Aquaculture 120: 53–60.

    Google Scholar 

  • Tave, D., 1995. Selective breeding programmes for medium sized fish farms. FAO Fish. Tech. Rep. 352 Rome, 122 pp.

  • Teskeredzic, E., Z. Teskeredzic, E. M. Donaldson, E. McLean & I. I. Solar, 1993a. Tiploidization of coho salmon following application of heat and electric shocks. Aquaculture 116: 287–294.

    Google Scholar 

  • Teskeredzic, E., E. M. Donaldson, Z. Teskeredzic, I. I. Solar & E. McLean, 1993b. Comparison of hydrostatic pressure and thermal shocks to induce triploidy in coho salmon (Oncorhynchus kistuch). Aquaculture 117: 47–55.

    Google Scholar 

  • Thorgaard, G. H., 1983. Chromosome set manipulation and sex control in fish. In W. S. Hoar, D. J. Randall & E. M. Donaldson (eds), Fish Physiology. Academic Press, NewYork, 9B: 405–434.

    Google Scholar 

  • Thorgaard, G. H., 1986. Ploidy manipulation and performance. Aquaculture 57: 57–64.

    Google Scholar 

  • Thorgaard, G. H. & G. A. E. Gall, 1979. Adult triploids in a rainbow trout family. Genetics 93: 961–973.

    PubMed  Google Scholar 

  • Thorgaard, G. H., M. E. Jazwin & A. R. Stier, 1981. Polyploidy induced by heat shock in rainbow trout. Trans. am. Fish. Soc. 110: 546–550.

    Google Scholar 

  • Thorgaard, G. H., P. S. Rabinovitch, M. W. Shen, G. A. E. Gall, J. Propp & F. M. Utter, 1982. Triploid rainbow trout identified by flow cytometry. Aquaculture 29: 305–309.

    Google Scholar 

  • Thorgaard, G. H., P. D. Scheerer & J. E. Parsons, 1985. Residual paternal inheritance in gynogenetic rainbow trout: Implications for gene transfer. Theor. appl Genet. 71: 119–121.

    Google Scholar 

  • Thorgaard, G. H., P. D. Scheerer, W. K. Hershberger & J. M. Myers, 1990. Androgenetic rainbow trout produced using sperm from tetraploid males show improved survival. Aquaculture 85: 215–221.

    Google Scholar 

  • Thorgaard, G. H., P. Spruell, P. A. Wheeler, P. D. Scheerer, A. S. Peek, J. J. Valentine & B. Hilton, 1995. Incidence of albinos as a monitor for induced triploidy in rainbow trout. Aquaculture 137: 121–130.

    Google Scholar 

  • Ueda, T., M. Kobayashi & R. Sato, 1986. Triploid rainbow trouts induced by polyethylene glycol. Proc. jap. Acad. 62B: 161–164.

    Google Scholar 

  • Ueda, T., M. Sawada & J. Kobayashi, 1987. Cytogenetic characteristics of the embryos between diploid female and triploid male in rainbow trout. Jan. J. Genet. 62: 461–465.

    Google Scholar 

  • Uneo, K. & B. Arimoto, 1982. Induction of triploids in Rhodeus ocellatus ocellatus by cold shock treatment of fertilized eggs. Experientia 38: 544–546.

    Google Scholar 

  • Utter, F. M., O. W. Johnson, G. H. Thorgaard & P. S. Rabinovitch, 1983. Measurement and potential application of induced triploidy in Pacific salmon. Aquaculture 35: 125–135.

    Google Scholar 

  • Uwa, H., 1965. Gynogenetic haploid embryos of the medaka (Oryzias latipes). Embryologia 9: 40–48.

    PubMed  Google Scholar 

  • Valcarcel, A., G. Guerrero & C. Maggese, 1994. Hertwig effect caused by UV-irradiation of sperm of the catfish Rhamdia sapo (Pisces, Pimelodidae) and its photoreactivation. Aquaculture 128: 21–28.

    Google Scholar 

  • Valenti, R. J., 1975. Induced polypioidy in Tilapia aurea (Steindachner) by means of temperature shock treatment. J. Fish Biol. 7: 519–528.

    Google Scholar 

  • vander Hurk, R. & J. G. D. Lambert, 1983. Temperature and steroid effects on gonadal sex differentiation in rainbow trout. In C. J. J. Richter & J. J. Th. Goos (eds), Proceedings International Symposium Reprod. Physiol. Fish. Pudoc, Wageningen: 69–72.

  • Vanderlongen, C. D. & P. A. Cook, 1990. Sex determination of live Gaigoen (Coracinus capensis cuvier) using a biochemical technique.

  • van Eenennaam, J. P., R. K. Stocker, R. G. Thiery, N. T. Hagstrom & S. F. Doroshov, 1990. Egg fertility, early development and survival from crosses of diploid female × triploid male grass carp (Ctenopharyngodon idelia). Aquaculture 86: 111–125.

    Google Scholar 

  • van Eenennaam, A. L., J. P. van Eenennaam, J. F. Medrano & S. I. Doroshov, 1996. Rapid verification of meiotic gynogenesis and polypioidy in white sturgeon (Acipenser transmontanus Richardson). Aquaculture 147: 177–189.

    Article  Google Scholar 

  • Varadaraj, K., 1990a. Endocrine and genetic studies on sex regulation in tilapia. Ph. D. thesis, Madurai Kamaraj University, Madurai, India.

    Google Scholar 

  • Varadaraj, K., 1990b. Production of diploid Oreochromis mossambicus gynogens using heterologous sperm of Gyprinus carpio. Ind. J. Exp. Biol. 28: 701–705.

    Google Scholar 

  • Varadaraj, K., 1993. Production of viable haploid Oreochromis mossambicus gynogens using UV-irradiated sperm. J. exp. Zool. 167: 460–467.

    Google Scholar 

  • Varadaraj, K. & T. J. Pandian, 1988. Induction of triploids in Oreochromis mossambicus by thermal, hydrostatic pressure and chemical shocks. Proc. Aquacult. Int. Congr. Vancouver, Canada: 531–535.

  • Varadaraj, K. & T. J. Pandian, 1989a. First report on production of supermale tilapia by integrating endocrine sex reversal with gynogenetic technique. Curr. Sci. 8: 434–441.

    Google Scholar 

  • Varadaraj, K. & T. J. Pandian, 1989b. Induction of allo-triploid in the hybrids of Oreochromis mossambicus female × red tilapia male. Proc. ind. Acad. Sci. (Anim. Sci) 98: 351–358.

    Google Scholar 

  • Varadaraj, K. & T. J. Pandian, 1990. Production of all-female sterile triploid Oreochromis mossambicus. Aquaculture 84: 117–123.

    Google Scholar 

  • Varadaraj, K., S. S. Kumari & T. J. Pandian, 1994. Comparison of conditions for hormonal sex reversal of Mozambique tilapias. Progr. Fish Cult. 56: 81–90.

    Google Scholar 

  • Vejaratpimol, R. & T. Penwim, 1990. Induction of triploidy in Clarias macrocephalus by cold shock. Proc. sec. asian Fish. Soc. Manila: 531–534.

  • Venere, P. C. & P. M. G. Junior, 1985. Natural triploidy and chromosome B in the fish Curimata modesta (Curimatidae, Characiformes). Revue Brasil. Genet. 8: 681–687.

    Google Scholar 

  • Vicente, V. E., O. M. Filho & J. P. M. Camacho, 1996. Sex-ratio distortion associated with the presence of a B chromosome in Astyanax scabripinnis (Teleostei, Characidae). Cytogenet. Cell Genet. 74: 70–75.

    PubMed  Google Scholar 

  • Villee, C. A., E. P. Solomon & P. W. Davis, 1985. Biology, Saunders College Publishing, Tokyo, 89 pp.

    Google Scholar 

  • Voet, D. & J. Voet, 1990. DNA replication, repair and recombination, In D. Voet & J. Voet (eds), Biochemistry, John Wiley, New York: 967–969.

    Google Scholar 

  • Volckaert, F. A. M., P. H. A. Galbusera, B. A. S. Hellemant, C. van den Heute, D. Vanstaen & F. Ollevier, 1994. Gynogenesis in the African catfish (Clarias gariepinus). 1: Induction of meiogynogenesis with thermal and pressure shocks. Aquaculture 128: 221–233.

    Google Scholar 

  • Vrijenhoek, R. C. & J. R. Schultz., 1974. Evolution of a trihybrid unisexual fish (Poeciliopsis, Poeciliidae). Evolution 2: 306–319.

    Google Scholar 

  • Wattendorf, R. J., 1986. Rapid identification of triploid grass carp with a Coulter counter and Channalizer. Progr. Fish Cult. 48: 125–132.

    Google Scholar 

  • Westergaard, M., 1958. The mechanism of sex determination in dioecious flowering plants. Adv. Genet. 9: 217–281.

    PubMed  Google Scholar 

  • White, M. D. J., 1973. Animal cytology and evolution. Cambridge University Press, U. K.: 961 pp.

    Google Scholar 

  • Wiberg, U. H., 1983. Sex determination in the European eel (Anguilia anguilla, L.) Cytogenet. Cell Genet. 36: 589–598.

    PubMed  Google Scholar 

  • Winge, O. & E. Ditlevsen, 1947. Color inheritance and sex determination in Lebistes. Heredity 1: 65–83.

    Google Scholar 

  • Wohifarth, G. W. & H. Wedekind, 1991. The heredity of sex determination in tilapias. Aquaculture 92: 143–156.

    Google Scholar 

  • Wolters, W. R., G. S. Libey & C. L. Chrisman, 1981. Induction of triploidy in channel catfish. Trans. am. Fish. Soc. 110: 312–314.

    Google Scholar 

  • Wolters, W. R., C. L. Chrisman & G. S. Libey, 1982a. Erythrocyte nuclear measurements of diploid and triploid channel catfish, Ictalurus punctatus (Rafinesque). J. Fish Biol. 20: 253–258.

    Google Scholar 

  • Wofters, W. R., G. S. Libey & C. L. Chrisman, 1982b. Effect of triploidy on growth and gonad development of channel catfish. Trans. am. Fish Soc. 111: 102–105.

    Google Scholar 

  • Wourms, J. P., 1981. Viviparity: The maternal-fetal relationship in fishes. Am. Zool. 17: 379–410.

    Google Scholar 

  • Wu, C., 1990. Retrospects and prospects of fish genetics and breeding in China. Aquaculture 85: 61–68.

    Google Scholar 

  • Wu, C., Y. Ye & R. Chen, 1986. Genome manipulation in carp (Cyprinus carpio L.). Aquaculture 54: 57–61.

    Google Scholar 

  • Wu, C., Y. Ye, R. Chen & W. Huang, 1990. Production of all-female carp and its cultivation results. Fish. Wat. Cons. 3: 21–23 (in Chinese).

    Google Scholar 

  • Wu, W., C. Li, G. Liu, D. Xu, C. Liu, J. Xie & C. Shan, 1988. Studies of tetraploid hybrid between red common carp (Cyprinus carpio) and grass carp (Ctenopharyngodon idellus) and its back cross triploid. Acta hydrobiol. sin. 12: 335–363 (in Chinese).

    Google Scholar 

  • Wu, C., Y. R. Chen & X. Liu, 1993. An artificial multiple triploid carp and its biological characteristics. Aquaculture 111: 255–262.

    Google Scholar 

  • Yamasaki, F., 1983. Sex control and manipulation in fish. Aquaculture 33: 329–354.

    Google Scholar 

  • Yamasaki, F. & J. Goodier, 1993. Cytogenetic effects of hydrostatic pressure treament to suppress the first cleavage of salmon embryos. Aquaculture 110: 51–59.

    Google Scholar 

  • Yamamoto, T., 1975. A YY male goldfish from mating estrone induced XY female and normal male. J. Hered. 66: 2–4.

    PubMed  Google Scholar 

  • Yamashita, M., J. Jiang, H. Onozato, T. Nakanishi & Y. Nagahama, 1993. A tripolar spindle formed at meiosis 1 assures the retension of the original ploidy in the gynogenetic triploid crucian carp, ginbuna Carassius auratus langsdorfii. Develop. Growth Differ. 35: 631–636.

    Google Scholar 

  • Yang, X., M. Chen, X. Yu & H. Chen, 1993. Biological characters and growth rate of diploid and triploid Japanese phytophagous crucian carp (JPCC). Aquaculture 111: 320.

    Google Scholar 

  • Yuchimenko. L. N., V. F. Viktorova, I. S. Tsheikunov, T. N. Tsheikunova, N. B. Cherfas & O. V. Emelyanova, 1988. The sensitivity to bacterial and virus infection in common carp and its hybrids. In E. A. Abdusalamov & O. N. Bauer (eds), Diseases and Parasites in Warm water Fisheries. Danish Publications, Dushanbe: 34–37 (in Russian).

    Google Scholar 

  • Yunhan, H., 1990. Tetraploidy induced by heat shock in big head carp, Aristichthys nobilis. Acta. Acad. sin 36: 70–75.

    Google Scholar 

  • Zaborski, P., M. Dorizzi & C. Pieau, 1982. H—Y antigen conversion in temperature sex-reversed turtles (Emys bicularis). Differentiation 22: 73–78.

    PubMed  Google Scholar 

  • Zan, R., Z. Song & W. Liu, 1986. Studies on karyotypes and nuclear DNA contents of some cyprinoid fishes, with notes on fish polypioids in China. In T. Uyeno, R. Arai, N. Taniguchi & K. Matsubara (eds), Proceedings 2nd International Conference Indo Pacific Fishes, Tokyo: 887–885.

  • Zhang, F., T. Oshiro & F. Takashima, 1992a. Chromosome synapsis and recombination duringmeiotic division in gynogenetic triploid ginbuna, Carassius auratus langsdorfii. Japan J. Ichthyol. 39: 151–155.

    Google Scholar 

  • Zhang, F., T. Oshiro & F. Takashima, 1992b. Fertility of triploid backcross progeny (Gengoroubina Carassius auratus cuvieri female × carp Cyprinus carpio male) F1 female × carp or Gengoroubina male. Japan J. Ichythyol. 39: 229–233.

    Google Scholar 

  • Zhang, S. M., X. Z. Zhang & Y. Zeng, 1993. Induced tetraploidy in grass carp (Ctenopharyngodon idella Val.) by heat shock. Asian Fish. Sci. 6: 213–218.

    Google Scholar 

  • Zhang, Y. P. & Y. P. Tang, 1993. DNA finger printing as a tool in fish biology. J. asian Fish. Sci. 6: 149–160.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pandian, T.J., Koteeswaran, R. Ploidy induction and sex control in fish. Hydrobiologia 384, 167–243 (1998). https://doi.org/10.1023/A:1003332526659

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1003332526659

Navigation