Skip to main content
Log in

Role of mass transfer on hydrogen evolution in aqueous media

  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The process of hydrogen evolution during alkaline electrolysis of aqueous solutions is governed by mass transfer, growth of hydrogen bubbles and removal of hydrogen from the cathode. Two mechanisms are decisive for hydrogen removal: (i) hydrogen dissolved in the solution is carried off from the cathode surface by diffusion and convection, and (ii) gas bubbles are transported by a two- phase flow. The paper describes experiments to determine the local concentration of dissolved hydrogen and the void fraction of hydrogen bubbles in aqueous solutions. Measurements were performed in a flow channel by varying the height of the cathode (40–400mm), the current density (up to 6250Am−2) and the mean velocity of the electrolyte (up to 0.95 m s−1). Two operating regimes of the electrolyser are found. At high current densities a back flow is observed leading to an increase in the electrolyte resistance. Traces of dissolved oxygen are detected at high current densities. At low current densities the two-phase flow is confined to a thin layer along the cathode surface, the concentration of dissolved hydrogen being small.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Müller, M. Krenz and K. Rübner, Electrochim. Acta 34 (1989) 305–8.

    Article  Google Scholar 

  2. N. Ibl, Chem. Ing. Technik 43 (1971) 202–15.

    Article  CAS  Google Scholar 

  3. F. N. Ngoya and J. Thonstad, Electrochim. Acta 30 (1985) 1659–64.

    Article  CAS  Google Scholar 

  4. H. F. M. Gijsbers and L. J. J. Janssen, J. Appl. Electrochem., 19 (1989) 637–48.

    Article  CAS  Google Scholar 

  5. C. W. Tobias, J. Electrochem. Soc. 106 (1959) 833–8.

    Article  CAS  Google Scholar 

  6. F. Hine, M. Yasuda, Y. Ogata and K. Hara, ibid. 131 (1984) 83–9.

    Article  CAS  Google Scholar 

  7. F. Hine and K. Murakami, ibid. 128 (1981) 64–8.

    Article  CAS  Google Scholar 

  8. Idem, ibid.127 (1980) 292–7.

    Article  CAS  Google Scholar 

  9. F. Hine, M. Yasuda, R. Nakamura and T. Noda, ibid 122 (1975) 1185–90.

    Article  CAS  Google Scholar 

  10. C. W. M. P. Sillen and S. J. D. van Stralen, Altern. Energy Sources 4 (1980) 357–69.

    Google Scholar 

  11. Idem, ibid.4 (1980) 119–32.

  12. L. J. J. Janssen, J. J. M. Geeraets, E. Barendrecht and S. D. J. van Stralen, Electrochim. Acta 27 (1982) 1207–18.

    Article  CAS  Google Scholar 

  13. L. J. J. Janssen and E. Barendrecht, ibid. 28 (1983) 341–6.

    Article  CAS  Google Scholar 

  14. L. J. J. Janssen, C. W. M. P. Sillen, E. Barendrecht and S. J. D. van Stralen, ibid. 29 (1984) 633–42.

    Article  CAS  Google Scholar 

  15. L. J. J. Janssen and G. J. Visser, J. Appl. Electrochem. 21 (1991) 386–94.

    Article  CAS  Google Scholar 

  16. Idem, ibid.21 (1991) 753–9.

  17. B. E. Bongenaar-Schlenter, E. Barendrecht, L. J. J. Janssen and S. J. D. van Stralen, DECHEMA-Monographien, Vol. 9 Verlag Chemie, Weinheim (1985), pp. 445–61.

    Google Scholar 

  18. B. E. Bongenaar-Schlenter, L. J. J. Janssen, S. J. D. van Stralen and E. Barendrecht, J. Appl. Electrochem. 15 (1985) 537–48.

    Article  CAS  Google Scholar 

  19. B. E. Bongenaar-Schlenter, L. J. M. Konings, C. J. Smeyers, J. H. G. Verbunt, E. Barendrecht, L. J. J. Janssen, W. M. Sluyter and S. J. D. van Stralen, Eur. Com. EUR 8651 (Hydrogen Energy Carrier) (1983) pp. 206–18.

  20. H. Vogt, Electrochim. Acta 26 (1981) 1311–17.

    Article  CAS  Google Scholar 

  21. Idem, J. Appl. Electrochem.17 (1987) 419–26.

    Article  CAS  Google Scholar 

  22. J. M. Bisang, ibid. 21 (1991) 760–6.

    Article  CAS  Google Scholar 

  23. D. J. G. Ives and G. J. Janz, ‘Reference Electrodes Theory and Practice’, Academic Press, New York (1961).

    Google Scholar 

  24. H. H. Landolt and R. Börnstein, Lösungsgleichgewichte (6. Aufl.) Bd. II 2. Teil, Springer-Verlag, Berlin (1962).

    Google Scholar 

  25. H. Vogt, J. Appl. Electrochem. 23 (1993) 1323–25.

    Article  CAS  Google Scholar 

  26. G. Kreysa and M. Kuhn, J. Appl. Electrochem. 15 (1985) 517–26.

    Article  CAS  Google Scholar 

  27. D. A. G. Bruggemann, Analen der Physik 24 (1935) 636–79.

    Article  Google Scholar 

  28. J. C. Maxwell, ‘A Treatise on Electricity and Magnetism’. Vol. 1 (2nd edn), Clarendon Press, Oxford (1881), p. 435.

    Google Scholar 

  29. J. P. Hoare, ‘The Electrochemistry of Oxygen’, Interscience, New York (1968), p. 13–46.

    Google Scholar 

  30. A. E. Lorch, Trans. Electrochem. Soc. 60 (1936) 401–8.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Riegel, H., Mitrovic, J. & Stephan, K. Role of mass transfer on hydrogen evolution in aqueous media. Journal of Applied Electrochemistry 28, 10–17 (1998). https://doi.org/10.1023/A:1003285415420

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1003285415420

Navigation