Skip to main content
Log in

Dynamic modelling of gas hold-up in different electrolyte systems

  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

In measurements of gas hold-up of oxygen and hydrogen as a function of the gas flow rate it was found that the gas hold-up epsiv(ug0) depends on the type of electrolyte and its concentrations as well as on the type of gas. Using an ultrasonic Doppler velocimeter, bubble rise velocities were investigated. It was observed that the single bubble rise velocity in electrolyte solutions depended strongly on the concentration. A model, developed to take into account the impediment to coalescence by electrolytes, was used to evaluate the dependence of gas hold-up on electrolyte concentration. An almost linear correlation between the system specific parameter, epsivmax, of this model and the ionic strength was found. However, this correlation is not too accurate and can only be seen as a rough approximation. Experimental results indicate that another mechanism is responsible for the dependence of the gas hold-up on electrolyte concentration. Thus, a new model was derived, which incorporated results of measurements of bubble rise velocities. This model was also applied to describe the gas hold-up in different electrolyte solutions as a function of gas flow rate. It also includes a system-specific parameter. The dependence of this parameter on the concentration of electrolytes was found to be in accordance with current theories on the bubble coalescence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Meredith and C. W. Tobias, J. Electrochem. Soc. 108 (1961) 286.

    Google Scholar 

  2. L. Sigrist, O. Dossenbach and N. Ibl, J. Appl. Electrochem. 10 (1980) 223.

    Google Scholar 

  3. G. Kreysa and M. Kuhn, ibid. 15 (1985) 517.

    Google Scholar 

  4. M. Kuhn and G. Kreysa, ibid. 19 (1989) 720.

    Google Scholar 

  5. M. Kuhn, Untersuchungen zum Einfluβ des Gasgehaltes und der Elektrodengeometrie auf den Widerstand gasentwickelnder Elektrolysezellen, PhD thesis, University of Dortmund (1988).

  6. D. J. Nicklin, Chem. Engng Sci. 17 (1962) 693.

    Google Scholar 

  7. J. F. Davidson and D. Harrison, ibid. 21 (1966) 731.

    Google Scholar 

  8. M. J. Lockett and R. D. Kirkpatrick, Trans. IChemE 53 (1975) 267.

    Google Scholar 

  9. P. Zehner, Vt. Verfahrenstechnik 16 (1982) 347.

    Google Scholar 

  10. K. Akita, Int. Chem. Eng. 29 (1989) 127.

    Google Scholar 

  11. M. Jamialahmadi and H. Müller-Steinhagen, Chem.-Ing.-Techn. 61 (1989) 715.

    Google Scholar 

  12. M. Jamialahmadi and H. Müller-Steinhagen, Trans. IChemE 68 (1990) 202.

    Google Scholar 

  13. M. J. Prince and H. W. Blanch, AIChE J. 36 (1990) 1425.

    Google Scholar 

  14. J. Grienberger, Untersuchung und Modellierung von Blasensäulen, PhD thesis, Universität Erlangen, Nürnberg (1992).

    Google Scholar 

  15. J. Zahradnik, M. Fialova, F. Kastanek, K. D. Green and N. H. Thomas, Trans. IChemE 73 (1995) 341.

    Google Scholar 

  16. H. Kellermann, Untersuchungen zum Gas-Holdup von H2 und O2 in wäβrigen Elektrolytlösungen, PhD thesis, in preparation.

  17. H. Kellermann, K. Jüttner and G. Kreysa, Chem. Techn. 48 (1996) 156.

    Google Scholar 

  18. Idem, ibid. 48 (1996) 16

  19. G. Marrucci and L. Nicodemo, Chem. Engng Sci. 22 (1967) 1257.

    Google Scholar 

  20. G. Marrucci, ibid. 24 (1969) 975.

    Google Scholar 

  21. R. R. Lessard and S. A. Zieminski, Ind. Engng Chem. Fundam. 10 (1971) 260.

    Google Scholar 

  22. G. Drogaris and P. Weiland, Chem. Engng Commun. 23 (1983) 11.

    Google Scholar 

  23. M. J. Prince and H. W. Blanch, AIChE J. 36 (1990) 1485.

    Google Scholar 

  24. G. Keitel and U. Onken, Chem. Engng Sci. 37 (1982) 1635.

    Google Scholar 

  25. Y. Fukui and S. Yuu, AIChE J. 28 (1982) 866.

    Google Scholar 

  26. N. P. Brandon, G. H. Kelsall, S. Levine and A. L. Smith, J. Appl. Electrochem. 15 (1985) 485.

    Google Scholar 

  27. G. H. Kelsall, S. Tang, S. Yurdakul and A. L. Smith, J. Chem. Soc. Faraday Trans. 92 (1996) 3887.

    Google Scholar 

  28. G. Marrucci, Ind. Engng Chem. Fundam. 4 (1965) 224.

    Google Scholar 

  29. G. Grund, A. Schumpe and W. D. Deckwer, Chem. Engng Sci. 47 (1992) 3509.

    Google Scholar 

  30. B. Genenger and B. Lohrengel, Chem. Engng Process. 31 (1992) 87.

    Google Scholar 

  31. S. A. Shetty, M. V. Kantak and B. G. Kelkar, AIChE J. 38 (1992) 1013.

    Google Scholar 

  32. G. Kuncová and J. Zahradník, Chem. Engng Process. 34 (1995) 25.

    Google Scholar 

  33. Th. Korte, Meβtechniken zur Charakterisierung von Blasensäulenreaktoren, das Ultraschallimpuls-Doppler-Anemometer, PhD thesis, University of Hanover (1986).

  34. B. P. Yao, C. Zheng, H. E. Gasche and H. Hofmann, Chem. Engng Process. 29 (1991) 65.

    Google Scholar 

  35. H. F. Svendson, H. A. Jakobsen and R. Torvik, Chem. Engng Sci. 47 (1992) 3297.

    Google Scholar 

  36. L. J. J. Janssen and E. Barendrecht, Electrochim. Acta 30 (1985) 683.

    Google Scholar 

  37. M. Jamialahmadi, C. Branch and H. Müller-Steinhagen, Trans. Inst. Chem. Eng. 72 (1994) 119.

    Google Scholar 

  38. W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical recipes in C, 2nd edn, Cambridge University Press, Cambridge (1992), p. 735

    Google Scholar 

  39. R. D. Kirkpatrick and M. J. Lockett, Chem. Engng Sci. 29 (1974) 2363.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kellermann, H., Ju¨ttner, K. & Kreysa, G. Dynamic modelling of gas hold-up in different electrolyte systems. Journal of Applied Electrochemistry 28, 311–319 (1998). https://doi.org/10.1023/A:1003219917662

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1003219917662

Navigation