Advertisement

Hydrobiologia

, Volume 363, Issue 1–3, pp 117–126 | Cite as

Variability of nutrient limitation in the Archipelago Sea, SW Finland

  • T. Kirkkala
  • H. Helminen
  • A. Erkkilä
Article

Abstract

Eutrophication is the most acute environmentalproblem in the Archipelago Sea, SW Finland. Whenanalysing the factors behind this escalatingeutrophication the determination of limitingnutrient at a given time is essential. Besidesexperimentations, nutrient limitation of planktonhas been extensively studied by direct chemicalanalyses. We used the latter approach in this work.Nutrient limitation was studied by calculatingdifferent nutrient ratios – totalnitrogen:phosphorus, inorganic nitrogen:phosphorus,and nutrient balance ratio. Results showed thatphosphorus usually limited primary production onlynear the coast line. In the middle zone of theArchipelago Sea the limiting factor variedtemporally. Outer in the open sea nitrogen limitedprimary production during most of the year.Phosphorus limited phytoplankton growth especiallyin spring and in summer and nitrogen in late summerand in autumn. Our results suggested that nitrogenis an important limiting nutrient in the ArchipelagoSea. In recent years when the eutrophication hasproceeded there has been a shift from productionlimitation by both nutrients to limitation bynitrogen alone. But if we want to define andcharacterize the nutrient limitation of the entireecosystem of the Archipelago Sea, budgets have to becalculated for both N and P and internal recyclingmust be taken into account as well as externalsupply of nutrients and loss processes.

nutrient limitation eutrophication nitrogen phosphorus Archipelago Sea 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alasaarela, E., 1980. Phytoplankton and environmental conditions in the northern part of the Bothnian Bay. Acta Univeritatis Ouluensis, Series A, no. 90, 23 pp.Google Scholar
  2. Bonsdorff, E. & E. M. Blomqvist, 1993. Biotic couplings on shallow water softbottoms–examples from the northern Baltic Sea. Oceanogr. Mar. Biol. Annu. Rev. 31: 153–176.Google Scholar
  3. Bonsdorff, E., E. M. Blomqvist, J. Mattila & A. Norkko, 1997. Coastal eutrophication–causes, consequences and perspectives; in the archipelago areas of the northern Baltic Sea. Est. Coast. Shelf Sci. (in press)Google Scholar
  4. Brzezinski, M. A., 1985. The Si:C:N ratio of marine diatoms: interspecific variability and the effect of some environmental variables. J. Phycol. 21: 347–357.CrossRefGoogle Scholar
  5. Doering, P. H., C. A. Oviatt, B. L. Nowicki, E. G. Klos & L. W. Reed, 1995. Phosphorus and limitation of primary production in a simulated estuarine gradient. Mar. Ecol. Prog. Ser. 124: 271–287.Google Scholar
  6. Elser, J. J., E. R. Marzolf & C. R. Goldman, 1990. Phosphorus and nitrogen limitation of phytoplankton growth in the freshwaters of North America: A review and critique of experimental enrichments. Can. J. Fish. aquat. Sci. 47: 1468–77.CrossRefGoogle Scholar
  7. Forsberg, C., S.-O. Ryding, A. Claesson & Å. Forsberg, 1978. Water chemical analyses and/or algal assay? Sewage effluent and polluted lake water studies. Mitt. int. Verein. Limnol. 21: 352–363.Google Scholar
  8. Harris, G. P., 1986. Phytoplankton ecology. Chapman & Hall, London, 384 pp.Google Scholar
  9. Hecky, R. E. & P. Kilham, 1988. Nutrient limitation of phytoplankton in freshwater and marine environments: A review of recent evidence on the effects of enrichment. Limnol. Oceanogr. 33: 796–822.Google Scholar
  10. Hecky, R. E., P. Campbell & L. Hendzel, 1993. The stoichiometry of carbon, nitrogen, and phosphorus in particulate matter of lakes and oceans. Limnol. Oceanogr. 38: 709–724.CrossRefGoogle Scholar
  11. HELCOM-Baltic Marine Environment Protection Commission–Helsinki Commission, 1993. First assessment of the state of the coastal waters of the Baltic Sea. Baltic Sea Environment Proc. no. 54, 155 pp.Google Scholar
  12. Jumppanen, K. & J. Mattila, 1994. The development of the state of the Archipelago Sea and environmental factors. Lounais-Suomen vesiensuojeluyhdistys r.y. Julkaisu 82, 200 pp. (in Finnish with English summary).Google Scholar
  13. Kangas, P., E. Alasaarela, H. Lax, S. Jokela & C. Storgård-Envall, 1993. Seasonal variation of primary production and nutrient concentrations in the coastal waters of the Bothnian Bay and the Quark. Aqua Fennica. 23: 165–176.Google Scholar
  14. Kirkkala, T., 1994. The nutrient load and the state of the Archipelago Sea. In Blomqvist, E. M. (ed.), Lantbrukets och fiskodlingars belastning i kust-och skärgårdsvatten. Nordiska Ministerrådets Skägårdssamarbete. Rapport 4: 30–35. (in Swedish)Google Scholar
  15. Koroleff, F., 1976. Determination of nutrients. In Grasshoff, K. (ed.), Methods of Seawater Analysis. Verlag Chemie. Weinheim, New York: 117–133.Google Scholar
  16. Koroleff, F., 1979. The general chemical analysis methods of sea water. Institute of Marine Research, Finland. Meri, no. 7, 60 pp. (in Finnish).Google Scholar
  17. Larsson, U., R. Elmgren & F. Wulff, 1985. Eutrophication and the Baltic Sea: Causes and consequences. Ambio 14: 9–14.Google Scholar
  18. Leppänen, J.-M., 1988. Carbon and nitrogen cycles during the vernal growth period in the open northern Baltic Proper. Finnish Institute of Marine Research. Meri, no. 16, 38 pp.Google Scholar
  19. Liebig, J., 1855. Principles of agricultural chemistry with special reference to the late researches made in England. A facsimile excerpt (17–34) reprinted in Pomeroy, L. R. (ed.) 1974. Cycles of Essential Elements: 11–28. Dowden, Hutchinson & Ross, Stroudsburg, Pennsylvania.Google Scholar
  20. Måkinen, I., A.-M. Suortti, R. Saares, R. Niemi & J. J. Marjanen, 1996. Ohjeita ympåristönåytteiden kemiallisten analyysimenetelmien validointiin. Suomenympåristökeskuksen moniste. (in Finnish).Google Scholar
  21. National Board of Waters, 1981. The analytical methods used by National Board of Waters and the Environment. National Board of Waters, Finland, Report 213, 136 pp. Helsinki (in Finnish).Google Scholar
  22. Numers, v. M., 1995. Distribution, numbers and ecological gradients of birds breeding on small islands in the Archipelago Sea, SW Finland. Acta Zool. Fenn. 197: 1–127.Google Scholar
  23. Oviatt, C., P. Doering, B. Nowicki, L. Reed, J. Cole & J. Frithsen, 1995. An ecosystem level experiment on nutrient limitation in temperate coastal marine environments. Mar. Ecol. Prog. Ser. 116: 171–179.Google Scholar
  24. Paasche, E., I. Bryceson & K. Tangen, 1984. Interspecific variation in dark nitrogen uptake by dinoflagellates. J. Phycol. 20: 394–401.CrossRefGoogle Scholar
  25. Paasche, E. & S. R. Erga, 1988. Phosphorus and nitrogen limitation of phytoplankton in the inner Oslofjord (Norway). Sarsia 73: 229–243.Google Scholar
  26. Pitkänen, H., 1994. Eutrophication of the Finnish coastal waters: origin, fate and effects of riverine nutrient fluxes. National Board of Waters and the Environment, Finland. 18: 1–45.Google Scholar
  27. Pitkänen, H., P. Kangas, P. Ekholm & M. Perttilä, 1986. Surface distribution of total phosphorus and total nitrogen in the Finnish coastal waters in 1979–1983. National Board of Waters, Finland. Publications of the Water Research Institute, 68: 40–54.Google Scholar
  28. Pitkänen, H., T. Tamminen, P. Kangas, T. Huttula, K. Kivi, H. Kuosa, J. Sarkkula, K. Eloheimo, P. Kauppila & B. Skakalsky, 1993. Late summer trophic conditions in the north-east Gulf of Finland and the river Neva estuary, the Baltic Sea. Estuar. coast. Shelf Sci. 37: 453–474.CrossRefGoogle Scholar
  29. PrENV ISO/CD 13530, 1995. Guide to Analytical Quality Control for Water Analysis, 80 pp.Google Scholar
  30. Redfield, A. C., B. H. Ketchum & F. A. Richards, 1963. The influence of organisms on the composition of sea–water. In Hill, M. N. (ed.), The Sea, vol. 2. Interscience, New York: 26–77.Google Scholar
  31. Reynolds, C. S. & A. E. Walsby, 1975. Water blooms. Biol. Rev. 50: 437–481.Google Scholar
  32. Ryther, J. H. & W. M. Dunstan, 1971. Nitrogen, phosphorus and eutrophication in the coastal marine environment. Science 171: 1008–1013.PubMedGoogle Scholar
  33. Sakshaug, E. & Y. Olsen, 1986. Nutrient status of phytoplankton blooms in Norwegian waters and algal strategies for nutrient competition. Can. J. Fish. aquat. Sci. 43: 389–396.CrossRefGoogle Scholar
  34. Seitzinger, S. P., 1988. Denitrification in freshwater and coastal marine ecosystems: Ecological and geochemical significance. Limnol. Oceanogr. 33:702–724.CrossRefGoogle Scholar
  35. Sommer, U., 1984. The paradox of the plankton: fluctuations of phosphorus availability maintain diversity of phytoplankton in flow-through cultures. Limnol. Oceanogr. 13: 633–636.Google Scholar
  36. Tamminen, T., 1982. Effects of ammonium effluents on planktonic primary production and decomposition in a coastal brackish water environment 1. Nutrient balance of the water body and effluent tests. Neth. J. Sea Res. 16: 455–464.CrossRefGoogle Scholar
  37. Tamminen, T., 1989. Dissolved organic phosphorus regeneration by bacterioplankton: 5′-nucletidase activity and subsequent phosphate uptake in a mesocosm enrichment experiment. Mar. Ecol. Prog. Ser. 58: 89–100.Google Scholar
  38. Tamminen, T., 1990. Eutrophication and the Baltic Sea: studies on phytoplankton, bacterioplankton and pelagic nutrient cycles. University of Helsinki, 21 pp.Google Scholar
  39. Taylor, D., S. Nixon, S. Granger & B. Buckley, 1995. Nutrient limitation and the eutrophication of coastal lagoons. Mar. Ecol. Prog. Ser. 127: 235–244.Google Scholar
  40. Wetzel, R. G., 1983. Limnology. 2nd edn. 767 pp. Saunders College Publishing, Philadelphia.Google Scholar
  41. Wulff, F. & L. Rahm, 1987. Long-term seasonal and spatial variations of nitrogen, phosphorus and silicate in the Baltic: An overview. Mar. Envir. Res. 26: 19–37.CrossRefGoogle Scholar
  42. Wulff, F., A. Stigebrandt & L. Rahm, 1990. Nutrient dynamics of the Baltic Sea. Ambio 19: 126–133.Google Scholar

Copyright information

© Kluwer Academic Publishers 1998

Authors and Affiliations

  • T. Kirkkala
    • 1
  • H. Helminen
    • 1
  • A. Erkkilä
    • 1
  1. 1.Southwest Finland Regional Environment CentreTurkuFinland

Personalised recommendations