, Volume 363, Issue 1–3, pp 191–205 | Cite as

Group-specific phytoplankton biomass/dissolved carbohydrate relationships in the Gulf of Trieste (Northern Adriatic)

  • Senka Terzić
  • Marijan Ahel
  • Gustave Cauwet
  • Alenka Malej


Distribution of carbohydrates (CHO) and photosynthetic pigments werestudied in the Gulf of Trieste, northern Adriatic Sea, during the period ofsummer stratification with a special emphasis on determining the impact ofthe taxonomic composition and concentration of phytoplankton biomass on thecarbohydrate levels in the water column. Dissolved total carbohydrates(DTCHO), dissolved monosaccharides (DMCHO) as well as particulatecarbohydrates (PTCHO) were determined using the colorimetric MBTH-method,while pigment biomarkers of the phytoplankton biomass were determined byreversed-phase HPLC. Concentrations of the total CHO (dissolved+particulate) varied in a wide range from 173 µg Cl™1 to 1552 µg C l™1. The percentage ofPTCHO in the total CHO concentration was relatively low(4–25%), indicating that the main pool of CHO was in thedissolved phase. The contribution of DTCHO to the total dissolved organiccarbon (DOC) in late summeontribution r was highly variable(10–65%) with an average value of 20 ± 14%, whilein early summer this percentage was somewhat lower and less variable (range11–23%; average 17± 3%). Analyses of biomarkerpigments revealed a very high diversity and a rather heterogenous verticaland spatial distribution of the phytoplankton biomass during the period ofsummer stratification. In September 1994, the predominant taxonomic groupsof phytoplankton were prymnesiophytes, diatoms, silicoflagellates,cyanobacteria and, especially in the bottom layer, dinoflagellates. Arelatively good correlation (r2 =0.51) found betweenDTCHO and chl a suggested that DTCHO were mainly of phytoplankton origin.Furthermore, a concomitant increase of DTCHO with peridinin and fucoxanthinindicated that dinoflagellates and diatoms had a decisive impact on CHOlevels in the water column. By contrast, early summer phytoplankton (June),which was dominated by prymnesiophytes, exhibited a comparatively lowerimpact on the CHO distribution.

carbohydrates dissolved organic carbon photosynthetic pigments phytoplankton coastal waters northern Adriatic 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ahel, M., S. Terzić, A. Malej & R. Precali, 1995. Phytoplankton pigment/ carbohydrate relationships in the northern Adriatic. Rapp. Comm. int. Mer Medit. 34: 54 pp.Google Scholar
  2. Barlow, R. G., 1982. Phytoplankton ecology in the southern Benguela current. III. Dynamics of a bloom. J. exp. mar. Biol. Ecol. 63: 239–248.CrossRefGoogle Scholar
  3. Barlow, R. G., R. F. C. Mantoura, M. A. Gough & T. W. Fileman, 1993. Pigment signatures of the phytoplankton composition in the northeastern Atlantic during the 1990 spring bloom. DeepSea Res. II 40: 459–477.CrossRefGoogle Scholar
  4. Burney, C. M., P. G. Davis, K. M. Johnson & J. McN. Sieburth, 1981. Dependence of dissolved carbohydrate concentrations upon small scalle nanoplankton and bacterioplankton distributions in the western Saragasso Sea. Mar. Biol. 65: 289–296.CrossRefGoogle Scholar
  5. Cauwet, G., 1994. HTCO method for dissolved organic carbon analysis in seawater: influence of catalyst on blank estimation. Mar. Chem. 47: 55–64.CrossRefGoogle Scholar
  6. Cauwet, G., S. Terzić, M. Ahel, P. Mozetić, V. Turk & A. Malej, 1997. Effect of nutrients addition on microbial plankton and dissolved organic matter variability. Part 2. Biochemical aspect. Proceedings of the International Conference on Physical and Biogeochemical Processes of the Adriatic Sea, Ancona (Italy), 23–27 April 1996. Commission of the European Communities, Ecosystems Research Reports Series, The Adriatic Sea. In press.Google Scholar
  7. Decho, A. W., 1990. Microbial exopolymer secretion in ocean environments: their role(s) in food webs and marine processes. Oceanogr. Mar. Biol. annu. Rev. 28: 73–153.Google Scholar
  8. Deggobis, D., S. Fonda-Umani, P. Franco, A. Malej, R. Precali & N. Smodlaka, 1995. Changes in the Northern Adriatic ecosystem and the hypertrophic appearance of gelatinous aggregates. Sci. tot. Envir. 165: 43–58.CrossRefGoogle Scholar
  9. Dhople, V. M. & N. B. Bhosle, 1987. Dissolved Carbohydrate in the Central Arabian Sea. Indian J. mar. Sci. 16: 43–45.Google Scholar
  10. Dubois, M., K. A. Gilles, J. K. Hamilton, P. A. Rebers & F. Smith, 1956. Colorimetric method for determination of sugars and related substances. Analyt. Chem. 28: 350–356.CrossRefGoogle Scholar
  11. Eberlein, K., U. H. Brockmann, K. D. Hammer, G. Kattner & M. Laake, 1983. Total dissolved carbohydrates in an enclosure experiment with unialgal Skeletonema costatum culture. Mar. Ecol. Prog. Ser. 14: 45–58.Google Scholar
  12. Faganeli J., N. Kovač, H. Leskovšek & J. Pezdič, 1995. Sources and fluxes of particulate organic matter in shallow coastal waters characterised by summer macroaggregate formation. Biogeochemistry 29: 71–88.CrossRefGoogle Scholar
  13. Fernandez, E., P. Serret, I. de Madariaga, D. S. Harbour & A. G. Davies, 1992. Photosynthetic carbon metabolism and biochemical composition of spring phytoplankton assemblages enclosed in microcosm: the diatom-Phaeocystis sp. succession. Mar. Ecol. Prog. Ser. 90: 89–102.Google Scholar
  14. Fogg, G. E., 1966. The extracellular products of algae. Oceanogr. Mar. Biol. annu. Rev. 4: 195–212.Google Scholar
  15. Fonda-Umani, S., P. Franco, E. Ghirardelli & A. Malej, 1992. Outline of oceanography and the plankton of the Adriatic Sea. In Colombo, G. et al. (eds), Marine Eutrophication and Population Dynamics. Olsen & Olsen: 347–365.Google Scholar
  16. Fonda-Umani, S., G. Cauwet, S. Cok, E. Martecchini & S. Predonzani, 1997. Chemical and biological patterns of the Gulf of Trieste: the example of early and late summer. Proceedings of the International Conference on Physical and Biogeochemical Processes of the Adriatic Sea, Ancona (Italy), 23–27 April 1996. Commission of the European Communities, Ecosystems Research Reports Series, The Adriatic Sea. In press.Google Scholar
  17. Haug, A. & S. Myklestad, 1976. Polysaccharides of marine diatoms with special reference to Chaetocerosspecies. Mar. Biol. 34: 217–222.CrossRefGoogle Scholar
  18. Ittekkot, V., U. Brockman, W. Michaelis & E. T. Degens, 1981. Dissolved free and combined carbohydrates during a phytoplankton bloom in the Northern North Sea. Mar. Ecol. Prog. Ser. 4: 299–305.Google Scholar
  19. Ittekkot, V., E. T. Degens & U. Brockmann, 1982. Monosaccharide composition of acid-hydrolyzable carbohydrates in particulate matter during a plankton bloom. Limnol. Oceanogr. 27: 711–716.CrossRefGoogle Scholar
  20. Johnson, K. M. & J. M. Sieburth, 1977. Dissolved carbohydrates in seawater I. A precise spectrophotometric method for monosaccharides. Mar. Chem. 5: 1–13.CrossRefGoogle Scholar
  21. Kiørboe, T. & J. L. S. Hansen,1993. Phytoplankton aggregate formation: observations of patterns and mechanisms of cell sticking and the significance of exopolymeric material. J. Plankton Res. 15: 993–1018.Google Scholar
  22. Malej, A., P. Mozetič, V. Malačić, S. Terzić & M. Ahel, 1995. Phytoplankton responses to freshwater inputs in a small semi-enclosed gulf (Gulf of Trieste, Adriatic Sea). Mar. Ecol. Prog. Ser. 120: 111–121.Google Scholar
  23. Marlow, I. T., L. J. Rogers & A. J. Smith, 1989. Extent and nature of extracellular organic production by marine coccolitophorid Hymemonas carterae. Mar. Biol. 100: 381–391.CrossRefGoogle Scholar
  24. Millie, D. F., H. W. Paerl & J. P. Hurley, 1993. Microalgal pigment assessments using highperformance liquid chromatography: A synopsis of organismal and ecological applications. Can. J. Fish. aquat. Sci. 50: 2513–2527.CrossRefGoogle Scholar
  25. Myklestad, S., 1974. Production of carbohydrates by marine planktonic diatoms. I. Comparison of nine different species in culture. J. exp. mar. Biol. Ecol. 15: 261–274.CrossRefGoogle Scholar
  26. Myklestad, S. M., 1995. Release of extracellular products by phytoplankton with special emphasis on polysaccharides. Sci. tot. Envir. 165: 155–164.CrossRefGoogle Scholar
  27. Myklestad, S., O. Holm-Hansen, K. M. Varum & B. E. Volcani, 1989. Rate of release of extracellular amino acids and carbohydrates from marine diatom Chaetoceros affinis. J. Plankton Res. 11: 763–773.Google Scholar
  28. Pakulski, J. D. & R. Benner, 1994. Abundance and distribution of carbohydrates in the ocean. Limnol. Oceanogr. 39: 930–940.CrossRefGoogle Scholar
  29. Passow, U., A. L. Alldredge & B. E. Logan, 1994. The role of particulate carbohydrate exudates in the flocculation of diatom blooms. Deep-Sea Res. 41: 335–357.CrossRefGoogle Scholar
  30. Posedel, N. & J. Faganeli, 1991. Nature and sedimentation of suspended particulate matter during density stratification in shallow coastal waters (Gulf of Trieste, northern Adriatic). Mar. Ecol. Prog. Ser. 77: 135–145.Google Scholar
  31. Revelante, N. & M. Gilmartin, 1992. The lateral advection of particulate organic matter from the Po delta region during summer stratification, and its implications for the northern Adriatic. Estuar. coast. Shelf Sci. 35: 191–212.Google Scholar
  32. Senior, W. & L. Chevolot, 1991. Studies of dissolved carbohydrates (or carbohydrate-like substances) in an estuarine environment. Mar. Chem. 32: 19–35.CrossRefGoogle Scholar
  33. Stachowitsch, M., N. Fanuko & M. Richter, 1990. Mucus aggregates in the Adriatic Sea: An overview of stages and occurences. P.Z.N.I. Mar. Ecol. 11: 327–350.CrossRefGoogle Scholar
  34. Terzić, S., 1996. Biogeokemija autohtone organske tvari u neritičkim područjima Mediterana: fotosintetski pigment i ugljikohidrati (in Croatian). [Biogeochemistry of autochtoneous organic matter in the neritic areas of the Mediterranean sea: photosynthetic pigments and carbohydrates]. Ph. D. Thesis. University of Zagreb, 177 pp.Google Scholar

Copyright information

© Kluwer Academic Publishers 1998

Authors and Affiliations

  • Senka Terzić
    • 1
  • Marijan Ahel
    • 1
  • Gustave Cauwet
    • 2
  • Alenka Malej
    • 3
  1. 1.Center for Marine Research ZagrebRuder Bošković InstituteZagrebCroatia
  2. 2.Observatoire Océanologique, Laboratoire AragoBanyuls sur MerFrance
  3. 3.National Institute of BiologyPiranSlovenia

Personalised recommendations