Advertisement

Hydrobiologia

, Volume 363, Issue 1–3, pp 229–240 | Cite as

Vertical and seasonal distributions of micro-organisms, zooplankton and phytoplankton in a eutrophic lake

  • Anne-Mari Ventelä
  • Vesa Saarikari
  • Kristiina Vuorio
Article

Abstract

The vertical distributions of bacteria, picoalgae,protozoan and metazoan zooplankton, and phytoplanktonin the highly eutrophic Lake Köyliönjärvi(SW Finland) were studied monthly during the period ofice-cover in January-April 1996. For comparison, wealso provide some data on the distributions of theplankton during the summer. The whole watercolumn remained oxic during the ice-covered period,although the near-bottom oxygen concentrations werealways very low. The heterotrophic nanoflagellateswere more abundant in winter than in summer, butciliates, picoalgae and bacteria were more numerous insummer. In general both zooplankton and phytoplanktonhad low biomass during the ice-covered period.However, the biomass of the diatom Aulacoseiraislandica ssp. islandica was high under the icein April. The calanoid copepod Eudiaptomusgraciloides was the dominant zooplankton species fromJanuary to March, but had almost disappeared by thebeginning of April and did not increase again until inJune. The dominant rotifer species in winterwere Keratella cochlearis, Filinia terminalis,and Filinia longiseta in the surface water andRotaria neptunia near the bottom.

ice cover winter micro-organisms zooplankton phytoplankton 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agbeti, M. D. & J. P. Smol, 1995. Winter limnology: a comparison of physical, chemical and biological characteristics in two temperate lakes during ice cover. Hydrobiologia 304: 221–234.Google Scholar
  2. Arvola, L. & P. Kankaala, 1989. Winter and spring variability in phytoplankton and bacterioplankton in lakes with different water colour. Aqua Fenn. 19: 29–39.Google Scholar
  3. Bolsenga, S. J. & H. A. Vanderploeg, 1992. Estimating photosynthetically available radiation into open and ice-covered freshwater lakes from surface characteristics; a high transmittance case study. Hydrobiologia 243/244: 95–104.CrossRefGoogle Scholar
  4. Brett, M. T., K. Wiackowski, F. S. Lubnow, A. Muellersolger, J. J. Elser & C. R. Goldman, 1994. Species-dependent effects of zooplankton on planktonic ecosystem processes in Castle Lake, California. Ecology 75: 2243–2254.CrossRefGoogle Scholar
  5. Burns, C. W. & M. Schallenberg, 1996. Relative impacts of copepods, cladocerans and nutrients on the microbial food web of a mesotrophic lake. J. Plankton. Res. 18: 683–714.Google Scholar
  6. Christoffersen, K. 1994. Variations of feeding activities of heterotrophic nanoflagellates on picoplankton. Marine Microbial Food Webs 8: 111–123.Google Scholar
  7. Cleve-Euler, A., 1951. Die Diatomeen von Schweden und Finnland. Kungliga Vetenskapsak-ademiens Handlingarna 2/1. Bibliotheca Phycologica 5: 1–162.CrossRefGoogle Scholar
  8. Cloern, J. E., A. E. Alpine, B. E. Cole & T. Heller, 1992. Seasonal changes in the spatial distribution of phytoplankton in small, temperate-zone lakes. J. Plankton Res. 14: 1017–1024.Google Scholar
  9. Granberg, L., 1970. Seasonal fluctuations in numbers and biomass of the plankton of Lake Pääjärvi, southern Finland. Ann. Zool. Fenn. 7: 1–24.Google Scholar
  10. Hakkari, L., 1969. Zooplankton studies in the Lake Längelmävesi, south Finland. Ann. Zool. Fenn. 6: 313–326.Google Scholar
  11. Hirvonen & Salonen, 1995. The first stage in restoring Lake Köyliönjärvi by fish removal. Vesitalous 36: 11–14.Google Scholar
  12. Hirvonen, A., H. Helminen, V. Saarikari, S. Salonen, K. Vuorio & J. Sarvala, 1993. Effects of cyprinid reduction on water quality in Lake Köyliönjärvi, SWFinland. 5th International Conference on the Conservation and Management of Lakes ’Strategies for Lake Ecosystems beyond 2000’, Proceedings 17–21 May, 1993 Stresa, Italy: 113–116.Google Scholar
  13. James, M. R., C. W. Burns & D. J. Forsyth, 1995. Pelagic ciliated protozoa in two monomictic, southern temperate lakes of contrasting trophic state: seasonal distribution and abundance. J. Plankton Res. 17: 1479–1500.Google Scholar
  14. Kivi, K., 1986. Annual succession of pelagic protozoans and rotifers in the Tvärminne Storfjärden, SW coast of Finland. Ophelia 4: 101–110.Google Scholar
  15. Latja, R. & K. Salonen, 1978. Carbon analysis for the determination of individual biomasses of planktonic animals. Verh. Internat. Verein. Limnol. 20: 2556–2560.Google Scholar
  16. Laybourn-Parry, J., J. Olver & S. Rees, 1990. The hypolimnetic protozoan plankton of a eutrophic lake. Hydrobiologia 203: 111–119.CrossRefGoogle Scholar
  17. MacIsaac, E. A. & J.G. Stockner, 1993. Enumeration of Phototrophic Picoplankton by Autofluorescense Microscopy. In P. F. Kemp, B. F. Sherr, E. B. Sherr & J. J. Cole (eds), Handbook of Methods in Aquatic Microbial Ecology. Lewis Publisher, Boca Raton.Google Scholar
  18. Maeda, O. & S. Ichimura, 1973. On the high density of a phytoplankton population found in a lake under ice. Int. Rev. Ges. Hydrobiol. 58: 473–485.Google Scholar
  19. Müller, H. & W. G. Geller, 1993. Maximum growth rates of aquatic ciliated protozoa: the dependence on body size and temperature reconsidered. Arch. Hydrobiol. 126: 126–327.Google Scholar
  20. Papinska, K., 1981. Occurrence of filtering Crustacea in the near-bottom and pelagic waters of the Mikolajskie Lake. Hydrobiologia 83: 411–418.CrossRefGoogle Scholar
  21. Pennak, R. W., 1968. Field and experimental winter limnology of three Colorado mountain lakes. Ecology 49: 505–520.CrossRefGoogle Scholar
  22. Porter, K. G. & Y. S. Feig, 1980. The use of DAPI for identifying and counting aquatic microflora. Limnol. Oceanogr. 25: 943–948.CrossRefGoogle Scholar
  23. Putt, M. & D. K. Stoecker, 1989. An experimentally determined carbon-volume ratio for marine oligotrichous ciliates from estuarine and coastal waters. Limnol. Oceanogr. 34: 1097.Google Scholar
  24. Salonen, K., 1981. Determination of carbon–an alternative method for the estimation of biomass of zooplankton. Lammi Notes 5: 7–11.Google Scholar
  25. Sarvala, J., H. Helminen, V. Saarikari, S. Salonen & K. Vuorio, 1998. Relations between planktivorous fish abundance, zooplankton and phytoplankton in three lakes of differing productivity, Hydrobiologia 363: 81–95.CrossRefGoogle Scholar
  26. Sherr, E. B. & B. F. Sherr, 1993. Preservation and storage of samples for enumeration of heterotrophic protists. In P. F. Kemp, B. F. Sherr, E. B. Sherr & J. J. Cole (eds), Handbook of Methods in Aquatic Microbial Ecology. Lewis Publishers, Boca Raton: 207–213Google Scholar
  27. Sommaruga, R. & R. Psenner, 1995. Trophic interactions within the microbial food web in Piburger See (Austria). Arch. Hydrobiol. 132: 257–278.Google Scholar
  28. Sommer, U., Z. M. Gliwicz, W. Lampert & A. Duncan, 1986. The PEG-model of seasonal succession of planktonnic events in freshwaters. Arch. Hydrobiol. 106: 433–471.Google Scholar
  29. Sterligova, O. P., 1979. Koryushka Osmerus eperlanus (L.) i ee rol v ikhtiofaune Syamozera. Voprosy Ikhtiologii 19: 793–800 (in Russian).Google Scholar
  30. Tulonen, T., 1993. Bacterial production in a mesohumic lake estimated from (14C) leucine incorporation rate. Microbiol. Ecol. 26: 201–217.CrossRefGoogle Scholar
  31. Vanderploeg, H. A., S. J. Bolsenga, G. L. Fahnenstiel, J. R. Liebig & W. S. Gardner, 1992. Plankton ecology in an ice-covered bay of Lake Michigan: utilization of a winter phytoplankton bloom by reproducing copepods. Hydrobiologia 243/244: 175–183.CrossRefGoogle Scholar
  32. Wiackowski, K., M. T. Brett & C. R. Goldman, 1994. Differential Effects of Zooplankton Species on Ciliate Community Structure. Limnol. Oceanogr. 39: 486–492.CrossRefGoogle Scholar
  33. Willén, T., 1962. Studies on the phytoplankton of some lakes connected with or recently isolated from the Baltic. Oikos 13: 169–199. Wright, R. T., 1964. Dynamics of a phytoplankton community in an icecovered lake. Limnol. Oceanogr. IX: 163–178.Google Scholar

Copyright information

© Kluwer Academic Publishers 1998

Authors and Affiliations

  • Anne-Mari Ventelä
    • 1
  • Vesa Saarikari
    • 1
  • Kristiina Vuorio
    • 1
  1. 1.Laboratory of Ecology and Animal SystematicsUniversity of TurkuFinland

Personalised recommendations