Advertisement

Hydrobiologia

, Volume 363, Issue 1–3, pp 241–251 | Cite as

Biochemical composition of particulate organic matter and bacterial dynamics at the sediment–water interface in a Mediterranean seagrass system

  • Roberto DanovaroEmail author
  • Norberto Della Croce
  • Mauro Fabiano
Article

Abstract

The seagrass Posidonia oceanica is the most productive system of theMediterranean Sea. In order to gather information on the temporal andspatial variability of the suspended particulate matter in relation tobacterial dynamics, water samples were collected at 10 cm above thesediments over a period of 13 months in the Prelo Bay (Ligurian Sea, NWMediterranean). Measurements of seston concentration, as well as theelemental (POC and PON) and biochemical composition (lipids, proteins,carbohydrates and nucleic acids) of particulate matter were carried out toassess the origin, composition and bacterial contribution to the foodpotentially available in the seagrass system to consumers. Lipids andproteins were the main biochemical classes of organic compounds, followed bycarbohydrates. Despite the highly refractory composition of the seagrassleaves, particulate organic matter was mostly composed of labile compounds(69.9% of POC). POM temporal patterns were controlled by currentspeed at the sediment–water interface that resuspended only smallparticles largely colonised by bacteria after an intensive process offractionation and aging. In the seagrass system, the POM appears to bedominated by bacteria (density ranging from 0.7 to 2.5×109 cells l™1, representing more than48.3% of POC and 68.7% of the biopolymeric carbon, as the sumof lipid, protein and carbohydrate carbon). This feature was characteristicof the seagrass system since much lower bacterial densities were foundoutside the Posidonia meadow. Bacteria were negatively correlated with theconcentration of nitrite and nitrate suggesting a selective utilisation ofinorganic nutrients to support their growth.

particulate organic matter composition bacteria sediment-waterinterface Posidonia oceanica 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bligh, E. G. & W. Dyer, 1959. A rapid method for total lipid extraction and purification. Can. J. Biochem. Physiol. 37: 911–917.PubMedGoogle Scholar
  2. Boyer, M., 1991. Variazione annuale di produzione primaria, biomassa e produzione batterica in una prateria di Posidonia oceanica del Golfo del Tigullio (Mar Ligure). Ph.D. Thesis, University of Genova, 160 pp.Google Scholar
  3. Danovaro, R., 1993. Analisi della dinamica e della struttura trofica di comunità meiobentoniche in relazione al contenuto ed alla composizione della sostanza organica particellata (Mar Ligure). Ph.D. Thesis University of Pisa, 246 pp.Google Scholar
  4. Danovaro, R., 1997. Detritus-Bacteria-Meiofauna interactions in a seagrass bed (Posidonia oceanica) of the NW Mediterranean. Mar. Biol. 127: 1–13.CrossRefGoogle Scholar
  5. Danovaro, R. & M. Fabiano, 1997. Seasonal changes in quality and quantity of food available for benthic suspension feeders in the Golfo Marconi (North-Western Mediterranean). Estuar. coast. Shelf Sci., 44: 723–736.CrossRefGoogle Scholar
  6. Danovaro, R., M. Fabiano & M. Boyer, 1994. Seasonal changes of benthic bacteria in a seagrass bed (Posidonia oceanica) of the Ligurian Sea in relation to origin composition and fate of the sediment organic matter. Mar. Biol. 119: 489–500.CrossRefGoogle Scholar
  7. Daumas, R., 1990. Contribution of the water-sediment interface to the transformation of biogenic substances: application to nitrogen compounds. Hydrobiologia 207: 15–29.CrossRefGoogle Scholar
  8. De Jonge, V. E., 1980. Fluctuations in the organic carbon to chlorophyll aa ratios for estuarine benthic diatom populations. Mar. Ecol. Prog. Ser. 2: 345–353.Google Scholar
  9. Dubois, M., K. A. Gilles, J. K. Hamilton, P. A. Rebers & F. Smith, 1956. Colorimetric method for determination of sugars and related substances. Analyt. Chem. 28: 350–356.CrossRefGoogle Scholar
  10. Fabiano, M., R. Danovaro & S. Fraschetti, 1995. Temporal trend analysis of the elemental and biochemical composition of the sediment organic matter in subtidale sandy sediments of the Ligurian Sea (NW Mediterranean): a three year study. Cont. Shelf Res. 15: 1453–1469.CrossRefGoogle Scholar
  11. Fichez, R., 1990. Decrease in allochthnonous organic inputs in dark submarine caves, connections with lowering in benthic community richness. Hydrobiologia 207: 61–69.CrossRefGoogle Scholar
  12. Fichez, R., 1991. Composition and fate of organic matter in submarine cave sediments; implications for the biogeochemical cycle of organic carbon. Oceanol. Acta 14: 369–377.Google Scholar
  13. Fry, J. C., 1990. Direct methods and biomass estimation. In Methods in Microbiology, Vol 22 Academic Press: 41–85.CrossRefGoogle Scholar
  14. Furhman, J. A., T. D. Sleeter, C. Carlson & L. M. Proctor, 1989. Dominance of bacterial biomass in the Sargasso sea and its ecological implications. Mar. Ecol. Prog. Ser. 57: 207–217.Google Scholar
  15. Hartree, E. F., 1972. Determination of proteins: a modification of the Lowry method that give a linear photometric response. Analyt. Biochem. 48: 422–427.PubMedCrossRefGoogle Scholar
  16. Hedges, J. I. & J. H. Stern, 1984. Carbon and nitrogen determination of carbonatecontaining solids. Limnol. Oceanogr. 29: 657–668.CrossRefGoogle Scholar
  17. Hermin, M.-N., 1989. Dégradation microbienne de la matière organique à l’interface eau sediment enmilieumarin. Thèse Doct. Univ. Aix-Marseille II, 202 pp.Google Scholar
  18. Hobbie, J. E., R. J. Daley & S. Jasper, 1977. Use of Nuclepore filters for counting bacteria by fluorescence microscopy. Appl. envir. Microbiol. 33: 1225–1228.Google Scholar
  19. Horrigan, S. G., A. Hagström, I. Koike & F. Azam, 1988. Inorganic nitrogen utilization by assemblages of marine bacteria in sea water culture. Mar. Ecol. Prog. Ser. 50: 147–150.Google Scholar
  20. Lawrence, J. M., Ch.-F. Boudouresque & F. Maggiore, 1989. Proximate costituents, biomass and energy in Posidonia oceanica (Potamogetonacea). PSZNI: Mar. Ecol. 10: 263–270.Google Scholar
  21. Lorenzen, C. & J. Jeffrey, 1980. Determination of chlorophyll in sea water. Unesco Technical Papers in Marine Science 35: 1–20.Google Scholar
  22. Lukavsky’, J., K. Tetik’ & J. Vandlova, 1973. Extraction of nucleic acid from the alga Scenedesmus quadricauda. Arch. Hydrobiol. Suppl. 9: 416–426.Google Scholar
  23. Marsh, J. B. & W. J. Weinstein, 1966. A simple charring method for determination of lipids. J. Lip. Res. 7: 574–576.Google Scholar
  24. Ott, J., 1980. Growth and production in Posidonia oceanica(L) Delile. PSZNI Mar. Ecol. 1: 47–64.Google Scholar
  25. Palumbo R., J. E. Ferguson & P. A. Rublee 1984. Size of suspended bacterial cells and association of heterotrophic activity with size fractions of particles in eastuarine and coastal waters. Appl. envir. Microbiol. 48: 157–164.Google Scholar
  26. Plante-Cuny, M. R., 1974. Evaluation par spectrophotometrie des teneurs en chlorophyll-afonctionelle et en phaeopigments des substrats meubles marins. O.R.S.T.O.M. Nosy-Bé, Documn Techqs, 45 pp.Google Scholar
  27. Simon, M. & F. Azam, 1989. Protein content and protein synthesis rates of planktonic marine bacteria. Mar. Ecol. Prog. Ser. 51: 201–213.Google Scholar
  28. Strickland, J. D. H. & T. R. Parsons, 1972. A practical handbook of sea water analysis. Fish. Res. Bd Can. Bull. 167: 310 pp.Google Scholar
  29. Tupas, L. M., I. Koike, D. M. Karl & O. Holm-Hansen, 1994. Nitrogen metabolism by heterotrophic bacterial assemblages in Antarctic coastal waters. Polar Biol. 14: 195–204.CrossRefGoogle Scholar
  30. Turley, C. M. & K. Lochte, 1985. Direct measurement of bacterial productivity in stratified waters close to a front in the Irish Sea. Mar. Ecol. Prog. Ser. 23: 209–219.Google Scholar
  31. Velimirov, B., 1986. DOC dynamics in a Mediterranean seagrass system. Mar. Ecol. Prog. Ser. 28: 21–41.Google Scholar
  32. Velimirov, B., 1987. Organic matter derived from a seagrass meadow: Origin, properties and quality of particles. PSZNI: Mar. Ecol. 8: 143–173.Google Scholar
  33. Velimirov, B. & M. Walenta-Simon, 1992. Seasonal changes in specific growth rates, production and biomass of a bacterial community in the water column above a Mediterranean seagrass system. Mar. Ecol. Prog. Ser. 80: 237–248.Google Scholar
  34. Velimirov, B. & M. Walenta-Simon, 1993. Bacterial growth rates and productivity within a seagrass system: seasonal variations in a Posidonia oceanicabed. Mar. Ecol. Prog. Ser. 96: 101–107.Google Scholar
  35. Zachleder, V., 1984. Optimization of nucleic acids assay in green and blue-green algae: extraction procedures and the light-activated diphenylamine reaction for DNA. Arch. Hydrobiol. Suppl. 67: 313–328.Google Scholar

Copyright information

© Kluwer Academic Publishers 1998

Authors and Affiliations

  • Roberto Danovaro
    • 1
    Email author
  • Norberto Della Croce
    • 2
  • Mauro Fabiano
    • 2
  1. 1.Facoltà di ScienzeUniversità di AnconaAnconaItaly
  2. 2.Istituto Scienze Ambientali MarineUniversità di GenovaGenovaItaly

Personalised recommendations