Advertisement

Hydrobiologia

, Volume 363, Issue 1–3, pp 13–27 | Cite as

Population regulation and role of mesozooplankton in shaping marine pelagic food webs

  • Thomas Kiørboe
Article

Abstract

Copepods constitute the majority of the mesozooplankton in the oceans.By eating and being eaten copepods have implications for the flow of matterand energy in the pelagic environment. I first consider populationregulation mechanisms in copepods by briefly reviewing estimates of growthand mortality rates and evidence of predation and resource limitation. Theeffects of variations in fecundity and mortality rates for the demography ofcopepod populations are then examined by a simple model, which demonstratesthat population growth rates are much more sensitive to variations inmortality than to variations in fecundity. This is consistent with theobserved tremendous variation in copepod fecundity rates, relatively low andconstant mortality rates and with morphological and behavioralcharacteristics of pelagic copepods (e.g., predator perception and escapecapability, vertical migration), which can all be considered adaptations topredator avoidance. The prey populations of copepods, mainly protozoa(ciliates) and phytoplankton, may be influenced by copepod predation tovarying degrees. The highly variable morphology and the population dynamics(e.g., bloom formation) of the most important phytoplankton prey populations(diatoms, dinoflagellates) suggest that predation plays a secondary role incontrolling their dynamics; availability of light and nutrients as well ascoagulation and sedimentation appear generally to be more important. Thelimited morphological variation of planktonic ciliates, the well developedpredator perception and escape capability of some species, and the oftenresource-unlimited in situ growth rates of ciliates, on the other hand,suggest that copepod predation is important for the dynamics of theirpopulations. I finally examine the implications of mesozooplankton activityfor plankton food webs, particularly their role in retarding vertical fluxesand, thus, the loss of material from the euphotic zone.

Copepods growth mortality grazing vertical flux 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aksnes, D. L., 1996. Natural mortality, fecundity and development in marine planktonic copepods–implications of behaviour. Mar. Ecol. Prog. Ser. 131: 315–316.Google Scholar
  2. Aksnes, D. L. & T. Magnesen, 1988. A population dynamic approach to the estimation of production of four calanoid copepods in Lindåspollene, western Norway. Mar. Ecol. Prog. Ser. 45: 57–68.Google Scholar
  3. Alldredge, A. L. & M. V. Silver, 1988. Characteristics, dynamics and significance of marine snow. Prog. Oceanogr. 20: 41–82.CrossRefGoogle Scholar
  4. Andersson, M., 1996. Regulering af copepodbestande i lavvandede fjorde. Betydning af fødebegrænsning og mortalitet. M.Sc. thesis, University of Copenhagen, 78 pp.Google Scholar
  5. Bakker, C. & P. Van Rijswijk, 1987. Development time and growth rate of the marine copepod Temora longicornisas related to food conditions in the Oosterschelde estuary (Southern North Sea). Neth. J. Sea Res. 21: 125–141.CrossRefGoogle Scholar
  6. Banse, K., 1995. Zooplankton: Pivotal role in the control of ocean production. ICES J. Mar. Sci. 52: 265–277.CrossRefGoogle Scholar
  7. Bechman, B. R. & W. T. Peterson, 1986. Egg production by Acartia tonsain Long Island Sound. J. Plankton Res. 8: 917–925.Google Scholar
  8. Berggreen, U., B. Hansen & T. Kiørboe, 1988. Food size spectra, ingestion and growth of the copepod Acartia tonsaduring development: implications for determination of copepod production. Mar. Biol. 99: 341–352.CrossRefGoogle Scholar
  9. Bollens, S. M & B. W. Frost, 1991. Diel vertical migration in zooplankton: Rapid individual response to predators. J. Plankton Res. 13: 1359–1365.Google Scholar
  10. Bollens, S. M, B. W. Frost & J. R. Cordell, 1994. Chemical, mechanical and visual cues in the vertical migration behaviour of the marine planktonic copepod Acartia hudsonica. J. Plankton Res. 16: 555–564.Google Scholar
  11. Burkill, P. H. & Kendall, T. F., 1982. Production of the copepod Eurytemora affinisin the Bristol Channel. Mar. Ecol. Prog. Ser. 7: 21–31.Google Scholar
  12. Carrick, H. J. & G. L. Fahnenstiel, 1992. Growth and production of planktonic protozoa in Lake Michigan: In situ versus in vitro comparisons and importance to food web dynamics. Limnol. Oceanogr. 37: 1221–1235.Google Scholar
  13. Checkley, D. M. Jr., 1980. Food limitation of egg production by a marine, planktonic copepod in the sea off southern California. Limnol. Oceanogr. 25: 991–998.Google Scholar
  14. Chrisholm, L. A. & J. C. Roff, 1990a. Sizeweight relationships and biomass of tropical neritic copepods off Kingston, Jamaica. Mar. Biol. 106: 71–77.CrossRefGoogle Scholar
  15. Chrisholm, L. A. & J. C. Roff, 1990b. Abundances, growth rates, and production of tropical neritic copepods off Kingston, Jamaica. Mar. Biol. 106: 79–89.CrossRefGoogle Scholar
  16. Colebrook, J. M., 1979. Continuous plankton records: Seasonal cycles of phytoplankton and copepods in the North Atlantic Ocean and the North Sea. Mar. Biol. 51: 23–32.CrossRefGoogle Scholar
  17. Dagg, M., 1978. Estimated, in situ, rates of egg production for the copepod Centropages typicus(Krøyer) in the New York Bight. J. exp. mar. Biol. Ecol. 34: 183–196.Google Scholar
  18. Dagg, M., 1993. Sinking particles as a possible source of nutrition for the large calanoidcopepod Neocalanus cristatusin the subarctic Pacific Ocean. Deep-Sea Res. 40: 1431–1445.CrossRefGoogle Scholar
  19. Dagg, M. J. & E. P. Green, 1994. Marine snow in the northern Gulf of Mexico. EOS, Transactions, AGU, 75: 36.Google Scholar
  20. Diel, S. & W. C. M. Klein Breteler, 1986. Growth and development of Calanusspp. (Copepoda) during a spring phytoplankton succession in the North Sea. Mar. Biol. 91: 85–92.CrossRefGoogle Scholar
  21. Dolan, J. R., 1991. Microphagous ciliates in mesohaline Chesapeake Bay waters: estimates of growth rates and consumption by copepods. Mar. Biol. 111: 303–309.CrossRefGoogle Scholar
  22. Durbin, A. G. & E. G. Durbin, 1981. Standing stock and estimated production rates of phytoplankton and zooplankton in Narragansett Bay, Rhode Island. Estuaries 4: 24–41.CrossRefGoogle Scholar
  23. Durbin, E.G., A. G. Durban, T. J. Smayda & P.G. Verity, 1983. Food limitation of production by adult Acartia tonsain Narragansett Bay, Rhode Island. Limnol. Oceanogr. 28: 1199–1213.Google Scholar
  24. Eppley, R. W., 1972. Temperature and phytoplankton growth in the sea. Fish. Bull. 70: 1063–1085.Google Scholar
  25. Fenchel, T. & B. J. Finlay, 1983. Respiration rates in heterotrophic, free-living protozoa. Microbiol. Ecol. 9: 99–122.CrossRefGoogle Scholar
  26. Fowler, S. W. & G. A. Knauer, 1986. Role of large particles in the transport of elements and organic compounds through the oceanic water column. Prog. Oceanogr. 16: 147–194.CrossRefGoogle Scholar
  27. Fransz, H. G. & S. Diel, 1985. Secondary production of Calanus finmarchicus(Copepoda:Calanoidea) in a transitional system of the Fladen Ground area (Northern North Sea) during the spring of 1983. In P. E. Gibbs (ed.), Proc. 19th Europ. Mar. Biol. Symp. Cambridge University Press, Cambridge: 123–133.Google Scholar
  28. Frost, B. W., 1988. Variability and possible adaptive significance of diel vertical migration in Calanus pacificus, a planktonic marine copepod. Bull. Mar. Sci. 43: 675–694.Google Scholar
  29. Gilmer, R. W. & G. R. Harbison, 1986. Morphology and field behaviour of pteropod molluscs: Feeding methods in the families Cavoliniidae, Limacinidae, and Peraclididae (Gastropoda: Thecosomata). Mar. Biol. 91: 47–57.CrossRefGoogle Scholar
  30. Goldman, J. C., 1987. On phytoplankton growth rates and particulate C: N ratios at low light. Limnol. Oceanogr. 31: 1358–1363.CrossRefGoogle Scholar
  31. González, H. E. & V. Smetacek, 1994. The possible role of the cyclopoid copepod Oithonain retarding vertical flux of zooplankton faecal material. Mar. Ecol. Prog. Ser. 113: 233–246.Google Scholar
  32. Hairston, N. G., F. E. Smith & L. B. Slobodkin, 1960. Community structure, population control, and competition. Am. Nat. 94: 421–425.CrossRefGoogle Scholar
  33. Hansen, B. & K. Christoffersen, 1995. Specific growth rates of heterotrophic plankton organisms in a eutrophic lake during a spring bloom. J. Plankton Res. 17: 413–430.Google Scholar
  34. Hansen, J. L. S., T. Kiørboe & A. L. Alldredge, 1996. Marine snow derived from abandoned larvacean houses: sinking rates, particle content and mechanism of aggregate formation. Mar. Ecol. Prog. Ser. 141: 205–215.Google Scholar
  35. Haslund, O. H. & M. Fryd, 1990. In situundersøgelser af juvenile copepoders vækstrater gennem en sæson i Kattegat. M.Sc. thesis, University of Copenhagen, 97 pp.Google Scholar
  36. Huntley, M. & M. D. G. Lopez, 1992. Temperature dependent growth production of marine copepods: a global synthesis. Am.Nat. 140: 201–242.CrossRefPubMedGoogle Scholar
  37. Hutchings, L., H. M. Verheye, B. A. Mitchell-Innes, W. T. Peterson, J. Huggett & S. Painting, 1995. Copepod production in the Southern Benguela system. ICES J. mar. Sci. 52: 439–455.CrossRefGoogle Scholar
  38. Ianora, A. & I. Buttino, 1990. Seasonal cycle in population abundance and egg production in the planktonic copepods Centropages typicusand Acartia clausii. J. Plankton Res. 12: 473–481.Google Scholar
  39. Jackson, G. A., 1993. Flux feeding as a mechanism for zooplankton grazing and its implications for vertical particle flux. Limnol. Oceanogr. 38: 1328–1331.Google Scholar
  40. Jonsson, P. & P. Tiselius, 1990. Feeding behaviour, prey detection and capture efficiency of the copepod Acartia tonsafeeding on planktonic ciliates. Mar. Ecol. Prog. Ser. 60: 35–44.Google Scholar
  41. Kimmerer, W. J., 1983. Direct measurements of the production: biomass ratio of the subtropical calanoid copepod Acrocalanus inermis. J. Plankton Res. 5: 1–14.Google Scholar
  42. Kimmerer, W. J., 1991. Predatory influences on prey distributions in coastal waters. Bull. Plankton Soc. Japan, Spec. Vol.: 161–174.Google Scholar
  43. Kimmerer, W. J. & A. D. McKinnon, 1987. Growth, mortality, and secondary production of the copepod Acartia tranteriin Westernport Bay, Australia. Limnol. Oceanogr. 32: 14–28.Google Scholar
  44. Kivi, K., S. Kaitala, H. Kuosa, J. Kuparinen, E. Leskinen, R. Lignell, B. Marcussen & T. Tamminen, 1993. Nutrient limitation and grazing control of the Baltic plankton community during annual succession. Limnol. Oceanogr. 38: 893–905.Google Scholar
  45. Kiørboe, T., 1993. Turbulence, phytoplankton cell size, and the structure of pelagic food webs. Adv. mar. Biol. 29: 1–72.CrossRefGoogle Scholar
  46. Kiørboe, T., C. Lundsgaard, M. Olesen & J. L. S. Hansen, 1994. Aggregation and sedimentation processes during a spring phytoplankton bloom: A field experiment to test coagulation theory. J. mar. Res. 52: 297–323.CrossRefGoogle Scholar
  47. Kiørboe, T. & T. G. Nielsen, 1994. Regulation of zooplankton biomass and production in a temperate, coastal ecosystem. 1. Copepods. Limnol. Oceanogr. 39: 493–507.Google Scholar
  48. Kiørboe, T., F. Møhlenberg & P. Tiselius, 1988. Propagation of planktonic copepods: production and mortality of egg. In G. A. Boxshall & H. K. Schminke (eds), Biology of Copepods. Developments i Hydrobiology 47. Kluwer Academic Press, Dordrecht: 219–225. Reprinted from Hydrobiologia 167/168.Google Scholar
  49. Kiørboe, T. & M. Sabatini, 1994. Reproductive and life cycle strategies in egg-carrying cyclopoid and free-spawning calanoid copepods. J. Plankton Res. 16: 1353–1366.Google Scholar
  50. Kiørboe, T. & M. Sabatini, 1995. Scaling of fecundity, growth and development in marine planktonic copepods. Mar. Ecol. Prog. Ser. 120: 285–298.Google Scholar
  51. Kiørboe, T., E. Saiz & M. Viitasalo, 1996. Prey switching behaviour in the planktonic copepod Acartia tonsa. Mar. Ecol. Prog. Ser. 143: 65–75.Google Scholar
  52. Landry, M. R., 1978. Population dynamics and Production of a Planktonic Marine Copepod, Acartia clausii, in a Small Temperate Lagoon on San Juan Island, Washington. Int. Revue ges. Hydrobiol. 63: 77–119.Google Scholar
  53. Landry, M. R., 1980. Detection of prey by Calanus finmarchicus: implications of the first antennae. Limnol. Oceanogr. 25: 545–549.Google Scholar
  54. Landry, M. R., 1981. Switching between herbivory and carnivory by the planktonic marine copepod Calanus pacificus. Mar. Biol. 65: 77–82.CrossRefGoogle Scholar
  55. Leakey, R. J. G., P. H. Burkill & M. A. Sleigh, 1994. Ciliate growth rates from Plymouth Sound: comparison of direct and indirect estimates. J. mar. biol. Ass. U.K. 74: 849–861.Google Scholar
  56. Levinsen, H., 1995. Protozooplanktonets betydning i et arktisk Pelagisk fødenet. M.Sc. thesis, Marine Biological Laboratory, University of Copenhagen, 53 pp.Google Scholar
  57. Lonsdale, D. J., E. M. Cosper, W. S. Kim, M. Doall, A. Divadeenam & S. H. Jonasdottir, 1996. Food web interactions in the plankton of Long Island bays, with preliminary observations on brown tide effects. Mar. Ecol. Prog. Ser. 134: 247–263.Google Scholar
  58. Miller, C. B., M. E. Huntley & E. R. Brooks, 1984. Post-collection molting rates of planktonic, marine copepods: Measurement, application, problems. Limnol. Oceanogr. 29: 1274–1289.Google Scholar
  59. Miller, C. B. & R. D. Nielsen, 1988. Development and growth of large, calanid copepods in the ocean Subarctic Pacific, May 1984. Prog. Oceanogr. 20: 275–292.CrossRefGoogle Scholar
  60. Mullin, M. M., 1991. Relative variability of reproduction and mortality in two pelagic copepod populations. J. Plankton Res. 13: 1381–1387.Google Scholar
  61. Munk,. H. & G. A. Riley, 1952. Absorption of nutrients by aquatic plants. J. Mar. Res. 11: 215–240.Google Scholar
  62. Myers, R. A. & J. R. Runge, 1983. Predictions of seasonal natural mortality rates in a copepod population using life history theory. Mar. Ecol. Prog. Ser. 11: 189–194.Google Scholar
  63. Nielsen, T. G. & T. Kiørboe, 1994. Regulation of zooplankton biomass and production in a temperate, coastal ecosystem. 2. Ciliates. Limnol. Oceanogr. 39: 508–519.Google Scholar
  64. Ohman, M. D., 1986. Predator-limited population growth of the copepod Pseudocalanussp. J. Plankton Res. 8: 673–713.Google Scholar
  65. Ohman, M. D., 1988. Behavioral responses of zooplankton to predation. Bull. Mar. Sci. 43: 530–550.Google Scholar
  66. Ohman, M. D., 1990. The demographic benefits of diel vertical migration by zooplankton. Ecol. Monogr. 60: 257–281.CrossRefGoogle Scholar
  67. Ohman, M. D. & S. N. Wood, 1995. The inevitability of mortality. ICES J. Mar. Sci. 52: 517–522.CrossRefGoogle Scholar
  68. Ohman, M. D. & S. N. Wood, 1996. Mortality estimation for planktonic copepods: Pseudocalanus newmaniin a temperate fjord. Limnol. Oceanogr. 41: 126–135.Google Scholar
  69. Paffenhöfer, G.-A., 1975. On the biology of appendicularia of the southeastern North Sea. 10th Europ. Symp. Mar. Biol., Ostende, Belgium 2: 437–455.Google Scholar
  70. Paffenhöfer, G.-A., 1993. On the ecology of marine cyclopoid copepods (Crustacea, Copepoda, Cyclopoida). J. Plankton Res. 15: 37–55.Google Scholar
  71. Paffenhöfer, G.A. & S. C. Knowles, 1979. Ecological implications of fecal pellets production and consumption by copepods. J. mar. Res. 37: 35–49.Google Scholar
  72. Peterson, W. T., P. Tiselius & T. Kiørboe, 1991. Copepod egg production, moulting and growth rates, and secondary production, in the Skagerrak in August 1988. J. Plankton Res. 13: 131–154.Google Scholar
  73. Peterson, W. T. & W. J. Kimmerer, 1994. Processes controlling recruitment of the marine calanoid copepod Temora longicornis in Long Island Sound: Egg production, egg mortality, and cohort survival rates. Limnol. Oceanogr. 39: 1594–1605.CrossRefGoogle Scholar
  74. Pielou, E. C., 1969. An Introduction to Mathematical Ecology. Wiley-Interscience, New York, 286 pp.Google Scholar
  75. Rudstam, L. G., G. Aneer & M. Hildén, 1994. Top-down control in the pelagic Baltic ecosystem. Dana 10: 105–129.Google Scholar
  76. Sabatini, M. & T. Kiørboe, 1994. Egg production, growth and development of the cyclopoid copepod Oithona similis. J. Plankton Res. 16: 1329–1351.Google Scholar
  77. Saiz, E. & T. Kiørboe, 1995. Predatory and suspension feeding of the copepod Acartia tonsain turbulent environments. Mar. Ecol. Prog. Ser. 122: 147–158.Google Scholar
  78. Seki, H. Red tide of Oikopleurain Saanich Inlet. Lamer Tome 11, No. 3: 153–158.Google Scholar
  79. Smetacek, V., 1980. Zooplankton standing stock, copepod fecal pellets and particulate detritus in Kiel Bight. Estuar. coast. Mar. Sci. 2: 477–490.Google Scholar
  80. Smetacek, V. S., 1984. Growth dynamics of a common Baltic protozooplankter: the ciliategenus Lohmaniella. Limnologica (Berlin) 15: 371–376.Google Scholar
  81. Smetacek, V. & F. Pollehne, 1986. Nutrient cycling in pelagic systems: A reappraisal of the conceptual framework. Ophelia 26: 401–428.Google Scholar
  82. Stoecker, D. K. & D. A. Egloff, 1987. Predation by Acartia tonsa Dana on planktonic ciliates and rotifers. J. exp. mar. Biol. Ecol. 110: 53–68.CrossRefGoogle Scholar
  83. Tiselius, P., 1989. Contribution of aloricate ciliates to the diet of Acartia clausiand Centropages hamatusin coastal waters. Mar. Ecol. Prog. Ser. 56: 49–56.Google Scholar
  84. Tiselius, P. & P. R. Jonsson, 1990. Foraging behaviour of six calanoid copepods: observations and hydrodynamic analysis. Mar. Ecol. Prog. Ser. 66: 23–33.Google Scholar
  85. Tranter, D. J., 1976. Herbivore production. In D. H. Cushing & J. J. Walsh (eds), The Ecology of the Seas. Blackwell Scientific Publications, Oxford: 186–224.Google Scholar
  86. Tumantseva, N. I. & A. I. Kopylov, 1985. Reproduction and production rates of planktonic infusoria in coastal waters of Peru. Oceanology 25: 390–394.Google Scholar
  87. Uye, S.-I., 1982. Population dynamics and production of Calanus sinicus(Copepoda: Calanoida) in inlet waters. J. exp. mar. Biol. Ecol. 57: 55–83.CrossRefGoogle Scholar
  88. Verity, P., 1986. Growth rates of natural tintinnid populations in Narragansett Bay. Mar. Ecol. prog. Ser. 29: 117–126.Google Scholar
  89. Verity, P. G. & V. Smetacek, 1996. Organism life cycles, predation, and the structure of marine pelagic ecosystems. Mar. Ecol. Prog. Ser. 130: 277–293.Google Scholar
  90. Vuorinen, I., 1987. Vertical migration of Eurytemora(Crustacea, Copepoda): A compromise between the risk of predation and decreased fecundity. J. Plankton Res. 9: 1037–1046.Google Scholar
  91. Walker, D. R. & W. T. Peterson, 1991. Relationships between hydrography, phytoplankton production, biomass, cell size and species composition, and copepod production in the southern Benguela Upwelling system in April 1988. S. Afr. J. mar. Sci. 11: 289–305.Google Scholar
  92. Wiadnyana, N. W. & F. Rassoulzadegan, 1989. Selective feeding of Acartia clausiand Centropages typicuson microzooplankton. Mar. Ecol. Prog. Ser. 53: 37–45.Google Scholar
  93. Williamson, C. E. & H. A. Vanderploeg, 1988. Predatory suspension-feeding in Diaptomus: Prey defense and the avoidance of cannibalism. Bull. Mar. Sci. 43: 561–572.Google Scholar
  94. Yen, J., P. H. Lenz, D. V. Gassie & D. K. Hartline, 1992. Mechanoreceptors in marine copepods: electrophysiological studies on the first antennae. J. Plankton Res. 14: 495–512.Google Scholar

Copyright information

© Kluwer Academic Publishers 1998

Authors and Affiliations

  • Thomas Kiørboe
    • 1
  1. 1.Danish Institute for Fisheries ResearchCharlottenlundDenmark

Personalised recommendations