, Volume 363, Issue 1–3, pp 219–227 | Cite as

The budgets of nitrogen and phosphorus in shallow eutrophic Lake Võrtsjärv (Estonia)

  • Peeter Nõges
  • Arvo Järvet
  • Lea Tuvikene
  • Tiina Nõges


The nutrient budget, phytoplankton primary productionand sedimentation rate were studied weekly in the large(270 km2) and shallow (mean depth 2.8 m)eutrophic Lake Võrtsjärv in 1995. The annualexternal loading was 7.7 g m™2 y™1 of totalnitrogen (TN) and 0.2 g m™2 y™1 of totalphosphorus (TP), including 7% of both inputs asdirect atmospheric precipitation. The external budgetrevealed a retention of 53% of TN and 28% of TPannual input. About 80% of the total loss of nitrogenwas accounted for by denitrification (3.3 g m™2 y™1) and only 20% was buried into the sediment.Wind-induced sediment resuspension played the majorrole in the upward nutrient flux formation and, thus,in the formation of the temporal pattern of nutrientconcentration during the ice-free season. Other fluxesas the external loading or new sedimentation ofautochthonous production were overcome and masked bythe powerful resuspension – sedimentation cycle,exceeding the former by one or two orders ofmagnitude. The intensity of upward flux of nutrients(mainly caused by resuspension) increased inaccordance to decreasing water level in autumn andcorrelated with the weekly average wind speed. Thesummer population of filamentous blue-greens dominatedby Limnothrix redekei was light-limited untilthe minima of TN:TP ratio (<10) and DIN:TN ratio(∼ 0) in July initiated a clear peak of N_2-fixingalgae (Aphanizomenon gracile, Anabaena spp.)which lasted until September.

Nutrient budget nutrient uptake shallowlake sedimentation resuspension denitrification 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ahlgren, I., 1967. Limnological studies of Lake Norvikken a eutrophicated Swedish lake. Schweiz. Z. Hydrol. 29: 53–90.Google Scholar
  2. Ahlgren, I., F. Sörensson, T. Waara & K. Vrede, 1994. Nitrogen budgets in relation to microbial transformations in lakes. Ambio 23: 367–377.Google Scholar
  3. Andersen, J. M., 1974. Nitrogen and phosphorus budgets and the role of sediments in six shallow Danish lakes. Arch. Hydrobiol. 74: 528–550.Google Scholar
  4. Andersen, F. Ø. & E. Lastein, 1981. Sedimentation and resuspension in shallow, eutrophic Lake Arreskov, Denmark. Verh. int. Ver Limnol. 21: 425–430.Google Scholar
  5. Boers, P. & J. Uunk, 1991. Lake restoration: estimation of internal phosphorus loading after reduction of external loading from sediment data. In P. Boers, The release of dissolved phosphorus from lake sediments. Diss. Ph.d. Netherlands: 79–90.Google Scholar
  6. Boström, B., M. Jansson & C. Forsberg, 1982. Phosphorus release from lake sediments. Arch. Hydrobiol. Beih. Ergeb. Limnol. 18: 5–59.Google Scholar
  7. Dudel, G. & J.-G. Kohl, 1991. Contribution of dinitrogen fixation and denitrification to the N-budget of a shallow lake. Verh. int. Ver Limnol. 24: 884–888.Google Scholar
  8. Downing, J. A. & E. McCauley, 1992. The nitrogen: phosphorus relationship in lakes. Limnol. Oceanogr. 37: 936–945.Google Scholar
  9. Galicka, W., 1992. Total nitrogen and phosphorus budgets in the Lowland Sulejów Reservoir for the hydrological years 1985–1988. Arch. Hydrobiol./Suppl. 90: 159–169.Google Scholar
  10. Hesslein, R. H., 1980. In situmeasurements of pore water diffusion coefficients using tritiated water. Can. J. Fish. aquat. Sci. 37: 545–551.CrossRefGoogle Scholar
  11. Jaani, A., 1990. Võrtsjärve veerežiim ja -bilanss. Eesti Loodus 11: 743–747.Google Scholar
  12. Jensen, J. P., P. Kristensen & E. Jeppesen, 1990. Relationships between nitrogen loading and in-lake nitrogen concentrations in shallow Danish lakes. Verh. int. Ver. Limnol. 24: 201–204.Google Scholar
  13. Jensen, J. P., E. Jeppesen, P. Kristensen, P. B. Christensen & M. Søndergaard, 1992. Nitrogen loss and denitrification as studied in relation to reductions in nitrogen loading in a shallow, hypertrophic lake (Lake Søbygård, Denmark). Int. Revue ges. Hydrobiol. 77: 29–42.Google Scholar
  14. Klein, G. & I. Chorus, 1991. Nutrient balances and phytoplankton dynamics in Schlachtensee during oligotrophication. Verh. Int. Ver. Limnol. 24: 873–878.Google Scholar
  15. Kört, M. & O. Roots, 1996. Õ hu saasteainete kauglevi seire. In O. Roots & R. Talkop (eds), Keskkonnaseire 1995. Keskkonnaministeeriumi Info-ja Tehnokeskus, Tallinn: 12–15.Google Scholar
  16. Kozerski, H.-P., J. Gelbrecht & R. Stellmacher, 1993. Seasonal and long-term variability of nutrients in Lake Müggelsee. Int. Rev. ges. Hydrobiol. 78: 423–438.Google Scholar
  17. Laugaste, R., 1994. The state, the origin of nutrients and the measures necessary for recovering Lake Verevi. In A. Järvekülg (ed), Eesti jõgede ja järvede seisund ning kaitse. Teaduste Akadeemia Kirjastus, Tallinn: 47–63.Google Scholar
  18. Löfgren, S., 1987. Phosphorus retention in sediments–implications for aerobic phosphorus release in shallow lakes. Acta Universitatis Upsaliensis. Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science 100, 24 pp.Google Scholar
  19. Martinova, M. V., 1993. Nitrogen and phosphor compounds in bottom sediments: mechanisms of accumulation, transformation and release. Hydrobiologia 252: 1–22.Google Scholar
  20. Nõges, P. & A. Järvet, 1995. Water level control over light conditions in shallow lakes. Report Series in Geophysics. University of Helsinki 32, 81–92.Google Scholar
  21. Nõges, T., 1997. Different fractions of primary production in the large, shallow eutrophic Lake Võrtsjärv. Ann. Limnol., in press.Google Scholar
  22. Nõges, T., 1998. Zooplankton-phytoplankton interactions in lakes Võrtsjärv, Peipsi (Estonia) and Yaskhan (Turkmenia). Hydrobiologia, 342/343: 175–183.CrossRefGoogle Scholar
  23. Redfield, A. S., 1958. The biological control of chemical factors in the environment. Am. Sci. 46: 205–211.Google Scholar
  24. Seitziger, S. P., 1988. Denitrification in freshwater and coastal marine ecosystems: Ecological and geochemical significance. Limnol. Oceanogr. 33: 702–724.CrossRefGoogle Scholar
  25. Søndergaard, M., P. Kristensen & E. Jeppesen, 1992. Phosphorus release from resuspended sediment in the shallow and wind-exposed Lake Arreso, Denmark. Hydrobiologia 228: 91–99.CrossRefGoogle Scholar
  26. Steeman-Nielsen, E., 1952. The use of radioactive carbon (14C) for measuring primary production in the sea. Journal du Conseil permanent international pour l’exploration del la mer. 18: 117–140.Google Scholar
  27. Wisniewski, R., 1995. The regulatory role of sediment resuspension in seston and phosphorus dynamics in shallow Lake Druzno. Proc. 6th Inrernat. Conf. on the Conservation and Management of Lakes–Kasumigaura’95: 917–920.Google Scholar
  28. Vollenweider, R. A., 1969. Möglichkeiten und Grenzen elementarer Modelle der Stoffbilanz von Seen. Arch. Hydrobiol. 66: 1–36.Google Scholar
  29. Vollenweider, R. A., 1976. Advances in defining critical loading levels for phosphorus in lake eutrophication. Mem. Ist. Ital. Idrobiol. 33: 53–83.Google Scholar
  30. Vollenveider, R. A., 1989. Assessment of mass balance. In S. E. Jørgensen & R. A. Vollenweider (eds), Guidelines of Lake Management I. Principles of Lake Management. ILEC, UNEP, Japan: 53–69.Google Scholar

Copyright information

© Kluwer Academic Publishers 1998

Authors and Affiliations

  • Peeter Nõges
    • 1
    • 2
  • Arvo Järvet
    • 3
  • Lea Tuvikene
    • 1
    • 2
  • Tiina Nõges
    • 1
    • 2
  1. 1.Institute of Zoology and BotanyRannu, Tartu CountyEstonia
  2. 2.Institute of Zoology and HydrobiologyTartu UniversityTartuEstonia
  3. 3.Institute of GeographyTartu UniversityTartuEstonia

Personalised recommendations