, Volume 363, Issue 1–3, pp 141–155 | Cite as

On the production, elemental composition (C, N, P) and distribution of photosynthetic organic matter in the Southern Black Sea

  • Ayşen Yılmaz
  • Süleyman Tuğrul
  • Çolpan Polat
  • Dilek Ediger
  • Yeşim Çoban
  • Enis Morkoç


Chemical oceanographic understanding of the southernBlack Sea has been improved by recent measurements ofthe optical transparency, phytoplankton biomass (interms of chlorophyll-a and particulate organic matter)and primary productivity. During the spring-autmunperiod of 1995–1996, light generally penetrated onlyinto the upper 15–40 m, with an attenuation coefficientvarying between 0.125 and 0.350 m2122;1. The averagechlorophyll-a (Chl-a) concentrations for the euphoticzone ranged from 0.1 to 1.5 µg l2122;1. Coherentsub-surface Chl-a maxima were formed near the base ofthe euphotic zone only in summer. Production rate variedbetween 247 and 1925 in the spring and between 405 and687 mgC m2122;2 d2122;1 in the summer-autumn period.The average POM concentrations in the euphotic zonevaried regionally and seasonally between 3.8 and28.6 µm for POC, 0.5 and 3.1 µm for PON and0.02 and 0.1 µm for PP. Atomic ratios of C/N, C/Pand N/P, derived from the regressions of POM data,ranged between 7.5 and 9.6, 109 and 165, and 11.2 and16.6, respectively. In the suboxic/anoxic interface,the elemental ratios change substantially due to anaccumulation of PP cohering to Fe and Mn oxides. Thechemocline boundaries and the distinct chemicalfeatures of the oxic/anoxic transition layer (the so-called suboxic zone) are all located at specificdensity surfaces; however, they exhibit remarkablespatial and temporal variations both in their positionand in their magnitude, which permit the definition of long-term changes in the biochemical properties of theBlack Sea upper layer.

Black Sea dissolved nutrients optical transparency seston elemental composition chlorophyll-a primary production 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Baştürk, Ö., C. Saydam, {ie154-01}. Saliho{ie154-02}lu, L. V. Eremeev, S. K. Konovalov, A. Stoyanov, A. Dimitrov, A. Cociasu, L. Dorogan & M. Altabet, 1994. Vertical variations in the principle chemical properties of the Black Sea in the autumn of 1991. Mar. Chem. 45: 149–165.CrossRefGoogle Scholar
  2. Baştürk, Ö, S. Tu{ie154-03}rul, S. Konavalov & I. Saliho{ie154-04}lu, 1997a. Variations in the vertical structure of water chemistry within the three hydrodynamically different regions of the Black Sea. In E. Özsoy & A. Mikaelyan (eds), Sensitivity to change: Black Sea, Baltic Sea and North Sea, NATO ASI Series, Kluwer Academic Publishers, in press.Google Scholar
  3. Baştürk, Ö, S. Tu{ie154-05}rul, S. Konovalov, A. Romanov & I. Saliho{ie154-06}lu, 1997b. Effects of circulation on the spatial distribution of principal chemical properties and unexpected short-and long-term changes in the Black Sea. In L. Ivanov & T. O{ie154-07}uz(eds), NATO TU-Black Sea Project: Ecosystem Modelling as a Management Tool for the Black Sea; Symposium on the Scientific Results, NATO ASI Series, Kluwer Academic Publishers, in press.Google Scholar
  4. Bingel, F., A. E. Kıdey{ie154-08}, E. Özsoy, S. Tu{ie154-09}rul, Ö. Baştürk & T. O{ie154-10}uz, 1993. Stock Assessment Studies for the Turkish Black Sea Coast. NATOTU Fisheries Final Report, Institute of Marine Sciences, Middle East Technical University, Erdemli-{ie154-11}çel/Turkey.Google Scholar
  5. Bodeanu, N., 1992. Algal blooms and development of the main planktonic species at the Romanian Black Sea littoral in conditions of intensification of the eutrophication process. In R. A. Vollenweider, R. Marchetti & R. V. Viviani (eds), Marine Coastal Eutrophication, Elsevier Publ., Amsterdam: 891–906.Google Scholar
  6. Bologa, A. S., 1985/1986. Planktonic primary productivity of the Black Sea: a review. Thalassia Jugoslavica 21/22: 1–22.Google Scholar
  7. Bologa, A. S., N. Bodeanu, A. Petran, V. Tiganus & Y. P. Zaitsev, 1995. Major modifications of the Black Sea benthic and planktonic biota in the last three decades. Bulletin de l’Institut Oceanographique, Monaco Special 15: 85–110.Google Scholar
  8. Brewer, P. G., 1971. Hydrographic and chemical data from the Black Sea. Woods Hole Oceanogr. Inst., Woods Hole, MA, Tech. Rep., Ref. No 71/65.Google Scholar
  9. Buesseler, K. O., H. D. Livingston, L. Ivanov & A. Romanov, 1994. Stability of the oxic-anoxic interface in the Black Sea, Deep-Sea Res. 41: 283–296.CrossRefGoogle Scholar
  10. Cline, J. D., 1969. Spectrophotometric determination of hydrogen sulphide in natural waters, Limnol. Oceanogr. 14: 454–458.CrossRefGoogle Scholar
  11. Cociasu, A., L. Dorogan, C. Humborg & L. Popa, 1996. Long-term ecological changes in Romanian Coastal Waters of the Black Sea. Mar. Poll. Bull. 32: 32–38.CrossRefGoogle Scholar
  12. Cociasu, A., V. Diaconu, L. Popa, I. Nae, L. Buga, L. Dorogan & V. Malciu, 1997. Nutrient stock of the Romanian shelf of the Black Sea in the last three decades. In E. Özsoy & A. Mikaelyan (eds), Sensitivity to change: Black Sea, Baltic and North Sea. NATO ASI Series, Kluwer Academic Publishers 27: 49–63.Google Scholar
  13. Codispoti, L. A., G. E. Friederich, J. W. Murray & C. M. Sakamato, 1991. Chemical variability in the Black Sea: Implications of continuous vertical profiles that penetrated the oxic/anoxic interface. Deep-Sea Res. 38: 691–710.Google Scholar
  14. Copin-Montegut, C. & G. Copin-Montegut, 1983. Stoichiometry of carbon, nitrogen and phosphorus in marine particulate matter. Deep-Sea Res. 30: 31–46.CrossRefGoogle Scholar
  15. Dortch, Q., 1990. The interaction between ammonium and nitrate uptake in phytoplankton. Mar. Ecol. Progr. Ser. 61: 183–201.Google Scholar
  16. Grasshoff, K., M. Ehrhardt & K. Kremling, 1983. Determination of nutrients. In Methods of Sea Water Analysis. 2nd edition, Verlag Chemie GmbH, Weinheim: 125–188.Google Scholar
  17. Hay, B. J. & S. Honjo, 1989. Particle deposition in the present and Holocene Black Sea. Oceanography 2: 26–31.Google Scholar
  18. Hay, B. J., S. Honjo, S. Kempe, V. A. Itekkot, E. T. Degens, T. Konuk & E. {ie155-01}zdar, 1990. Interannual variability in particle flux in the southwestern Black Sea. Deep-Sea Res. 37: 911–928.CrossRefGoogle Scholar
  19. Hay, B. J., M. A. Arthur, W. E. Dean & E. D. Neff, 1991. Sediment deposition in the Late Halocene abyssal Black Sea: Terrigeneous and biogenic matter. Deep Sea Res. 38 (Suppl.): S711–S723.Google Scholar
  20. Hecky, R. E., P. Campbell & L. L. Hendzel, 1993. The stoichiometry of carbon, nitrogen and phosphorus in particulate matter of lakes and oceans. Limnol. Oceanogr. 38: 709–724.CrossRefGoogle Scholar
  21. Holm-Hansen, O. & B. Riemann, 1978. Chlorophyll-a determination: improvements in methodolgy. Oikos 30: 438–447.Google Scholar
  22. Karl, D.M. & G. A. Knauer, 1991. Microbial production and particle flux in the upper 350 m of the Black Sea. Deep-Sea Res. 38: 921–942.Google Scholar
  23. Kempe, S., A. R. Diercks, G. Liebezeit & A. Prange, 1991. Geochemical and structural aspects of the pycnocline in the Black Sea (R/V Knorr 134-8 Leg1, 1988). In E. {ie155-02}zdar & J. W. Murray (eds), Black Sea Oceanography. NATO-ASI Series C, 351, Kluwer Acad. Publ., Netherlands: 89–110.Google Scholar
  24. Krom, M. D., S. Brenner, N. Kress, A. Neori & L. I. Gordon, 1992. Nutrient dynamics and new production in a warm eddy from the eastern Mediterranean. Deep-Sea Res. 39: 467–480.CrossRefGoogle Scholar
  25. Kubilay, N., S. Yemenicio{ie155-03}lu & A. C. Saydam, 1995. Airborne material collections and their chemical composition over the Black Sea. Mar. Poll. Bull. 30: 475–483.CrossRefGoogle Scholar
  26. Mee, L. D., 1992. The Black Sea in crisis: The need for concerted international action. Ambio 21: 278–286.Google Scholar
  27. Murray, J. M., H. W. Jannasch, S. Honjo, R. F. Anderson, W. S. Reeburgh, Z. Top, G. E. Friederich, L. A. Codispotu & E. {ie155-04}zdar, 1989. Unexpected changes in the oxic/anoxic interface in the Black Sea. Nature 338: 411–413.CrossRefGoogle Scholar
  28. Murray, J. M., Z. Top & E. Özsoy, 1991. Hydrographic properties and ventilation of the Black Sea. Deep-Sea Res. 38: S663–S690.CrossRefGoogle Scholar
  29. Murray, J. M., L. A. Codispoti & G. E. Friederich, 1994. Redox environments: The suboxic zone in the Black Sea. In C. P. Huang, C. R. O‘Melia & J. J. Morgan (eds), Aquatic Chemistry, Advances in Chemistry Series, American Chemical Society.Google Scholar
  30. Murray, J. M., L. A. Codispoti & G. E. Freiderich, 1995. Oxidation-reduction Environments: The suboxic zone in the Black Sea. In C. P. Huang, C. R. O’Melia & J. J. Morgan (eds), Aquatic Chemistry, ACS Advances in Chemistry Series 244: 157–176.Google Scholar
  31. O{ie155-05}uz, T., M. A. Latif, H.{ie155-06}. Sur, E. Özsoy & Ü. Ünlüata, 1991. On the dynamics of the southern Black Sea. In E. {ie155-07}zdar & J. W. Murray (eds), Black Sea Oceanography, NATO-ASI Series C, 351, Kluwer Acad. Publ., Netherlands: 43–63.Google Scholar
  32. O{ie155-08}uz, T. & P. E. La Violette, 1992. The upper layer circulation of the Black Sea: Its variability as inferred from hydrographic and satellite observations, J. Geophys. Res. 97(C8): 12,569–12,584.Google Scholar
  33. O{ie155-09}uz, T., V. S. Latun, M. A. Latif, V. V. Vladimir, H.{ie155-10}. Sur, A. A. Markov, E. Özsoy, B. B. Kotovhchikov, V. V. Eremeev & Ü. Ünlüata, 1993. Circulation in the surface and intermediate layers of the Black Sea, Deep-Sea Res. 40: 1597–1612.CrossRefGoogle Scholar
  34. O{ie155-11}uz, T., H. Ducklow, P. Malanotte-Rizzoli, S. Tu{ie155-12}rul, N. P. Nezlin & Ü. Ünlüata, 1996. Simulation of annual plankton productivity cycle in the Black Sea by a one-dimensional physical-biological model. J. of Geophys. Res. 101(C7): 16,585–16,599.Google Scholar
  35. Polat, Ç.S. & S. Tu{ie155-13}rul, 1995. Nutrient and organic carbon exchanges between the Black and Marmara seas through the Bosphorus strait, Continental Shelf Res. 15: 1115–1132.CrossRefGoogle Scholar
  36. Richardson, 1991. Comparison of 14C primary production determinations made by different laboratories. Mar. Ecol. Prog. Ser. 72: 189–201.Google Scholar
  37. Romanov, A., Ö Baştürk, S. Konavalov & S. Gökmen, 1997. A comperative study of spectrophotometric and iodometric back titration methods for hydrogen sulphide determination in anoxic Black Sea waters. In L. Ivanov & T. O{ie155-14}uz (eds), NATO TU-Black Sea Project: Ecosystem Modelling as a Management Tool for the Black Sea; Symposium on the Scientific Results. NATO ASI Series, Kluwer Academic Publishers, in press.Google Scholar
  38. Shaffer, G., 1986. Phosphate pumps and shuttles in the Black Sea. Nature 321: 515–517.CrossRefGoogle Scholar
  39. Shuskina, E. A. & E. I. Musaeva, 1990. Structure of planktonic community from the Black Sea epipelagical and its changes as the result of the introduction of a ctenophore species. Oceanology 30: 306–310.Google Scholar
  40. Smayda, T. J., 1990. Novel and nuisance phytoplankton blooms in the sea: Evidence for a global epidemic. In E. Granelli, B. Sundstroem, L. Elder & D. M. Anderson (eds), Lund, Sweden, 26–30 June, 1989: 9–40.Google Scholar
  41. Sorokin, Yu. I., 1983. The Black Sea. In B. H. Ketchum (ed), Estuaries and Enclosed Seas. Ecosystem of the World. Elsevier, Amsterdam: 253–292.Google Scholar
  42. Steemann Nielsen, E., 1952. The use of radioactive carbon (14C) for measuring organic production in the sea. J. Cons. perm. int. Explor. Mer. 18: 117–140.Google Scholar
  43. Strickland, J.D.H. & T.R. Parsons, 1972. A practical handbook of seawater analysis. 2nd edition. Bull. Fish. Res. Bd Can. 167.Google Scholar
  44. Sur, H.{ie156-01}., E. Özsoy, Y. P. Ilyin & Ü. Ünlüata, 1996. Coastal/deep ocean interactions in the Black Sea and their ecological/environmental impacts. J. Mar. Systems 7: 293–320.CrossRefGoogle Scholar
  45. Tu{ie156-02}rul, S., Ö. Baştürk, C. Saydam & A. Yılmaz, 1992. Changes in the hydrochemistry of the Black Sea inferred from water density profiles. Nature 359: 137–139.CrossRefGoogle Scholar
  46. Uysal, Z., A. E. Kideyş, L. Georgieva, D. Altukhov, L. Kuzmenko, L. Manjos, E. Mutlu & E. Eker, 1997. Phytoplankton patches formed along the southern Black Sea coast in spring and summer 1996. In L. Ivanov & T. O{ie156-03}uz (eds), NATO TU-Black Sea; Symposium on the Scientific Results, NATO, ASI Series, Kluwer Academic Publishers, in press.Google Scholar
  47. Vedernikov, V. I. & A. B. Demidov, 1993. Primary production and chlorophyll in the deep regions of the Black Sea. Oceanology 33: 229–235.Google Scholar
  48. Vidal, C. V., 1995. Bio-optical characteristics of the Mediterranean and the Black Sea. M.S. Thesis, 134 pp., Institute of Marine Sciences, Erdemli, {ie156-04}çel, Turkey.Google Scholar
  49. Vinogradov, M. Ye., E. A. Shushkina, Eh. I. Musaeva & Yu. I. Sorokin, 1989. The comb-jelly Mnemiopsis leidyi(A. Agassiz) (Ctenophora:Lobata); a newly introduced species in the Black Sea. Oceanology 29: 293–299 (In Russian).Google Scholar
  50. Vladimirov, V. L., V. I. Mankovsky, M. V. Solov’ev & A. V. Mishonov, 1997. Seasonal and long-term variability of the Black Sea optical parameters, In E. Özsoy & A. Mikaelyan (eds), Sensitivity to change: Black Sea, Baltic and North Sea. NATO ASI Series, Kluwer Academic Publishers, 27: 33–48.Google Scholar
  51. Yılmaz, A. & S. Tu{ie156-05}rul, 1997. The effect of cold-and warm-core eddies on the distribution and stoichiometry of dissolved nutrients in the Northeastern Mediterranean. J. Mar. Systems (in press).Google Scholar

Copyright information

© Kluwer Academic Publishers 1998

Authors and Affiliations

  • Ayşen Yılmaz
    • 1
  • Süleyman Tuğrul
    • 1
  • Çolpan Polat
    • 2
  • Dilek Ediger
    • 1
  • Yeşim Çoban
    • 1
  • Enis Morkoç
    • 3
  1. 1.Institute of Marine SciencesMiddle East Technical UniversityErdemli-IçelTurkey
  2. 2.Institute of Marine Sciences and ManagementIstanbul UniversityVefa-IstanbulTurkey
  3. 3.Turkish Scientific and Technological Research Council (TÜBITAK), Marmara Research CenterGebze-KocaeliTurkey

Personalised recommendations