, Volume 363, Issue 1–3, pp 81–95 | Cite as

Relations between planktivorous fish abundance, zooplankton and phytoplankton in three lakes of differing productivity

  • Jouko Sarvala
  • Harri Helminen
  • Vesa Saarikari
  • Seppo Salonen
  • Kristiina Vuorio


Water chemistry, phytoplankton, zooplankton and fish populations werestudied over several years in three shallow, non-stratified lakes withdiffering nutrient loadings and fish communities in southwest Finland. LakePyhäjärvi was weakly mesotrophic in 1980–1996, LakeKöyliönjärvi was highly eutrophic in 1991–1996, andLake Littoistenjärvi was mesotrophic in 1993–1996 and eutrophicin 1992. In Lake Pyhäjärvi, natural year-class fluctuations ofvendace and smelt (range of combined biomass 5–28 kgha™1) caused significant variation in planktivory. The verydense fish stocks of Lake Köyliönjärvi (mainly roach, breamand smelt) were decimated from >175 kg ha™1 in 1991 toabout 50 kg ha−1 in 1996 by removal fishing. The roach stockof Lake Littoistenjärvi declined from about 71 kg ha−1 toabout 28 kg ha−1 during 1993–1996. In LakePyhäjärvi, strong stocks of planktivorous fish were accompaniedwith depressed crustacean zooplankton biomass, reduced role of calanoids andcladocerans, a low proportion of larger cladocerans (length > 0.5 mm),and a high chlorophyll level. In the lakes Littoistenjärvi andKöyliönjärvi, zooplankton was dependent on both fish andphytoplankton: in spite of dense fish stocks, a high crustacean biomassdeveloped in a phytoplankton peak year, but it was dominated by very smallcladocerans. In Lake Pyhäjärvi, late summer chlorophyllconcentration was predictable from total phosphorus in water and cladoceranbiomass (r2 = 0.68), both factors explaining roughlysimilar fraction of total variation. In combined data from all three lakes,chlorophyll was almost solely dependent on total phosphorus, while thecladocerans were regulated both from below by productivity and from above byfish. Our data from Pyhäjärvi lend support to consumer regulationof late summer phytoplankton; low chlorophyll values prevailed whenplanktivorous fish biomass was below 15 kg ha−1. In largeeutrophic lakes it may be difficult to reduce fish stocks to such a lowlevel: in Lake Köyliönjärvi, after six years of removalfishing, fish biomass still remained higher, and changes in plankton wereaccordingly small. Unexpectedly, in 1993–1996, phytoplankton biomassin Littoistenjärvi remained low in spite of low crustacean zooplanktonbiomass; submerged macrophytes probably regulated the water quality.

phytoplankton zooplankton planktivorous fish phosphorus biomanipulation trophic interactions 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adrian, R. & R. Deneke, 1996. Possible impact of mild winters on zooplankton succession in eutrophic lakes of the Atlantic European area. Freshwat. Biol. 36: 757–770.CrossRefGoogle Scholar
  2. Blindow, I., G. Andersson, A. Hargeby & S. Johansson, 1993. Long-term pattern of alternative stable states in two shallow eutrophic lakes. Freshwat. Biol. 30: 159–167.CrossRefGoogle Scholar
  3. Brett, M. T.& C. R. Goldman, 1996. A meta-analysis of the freshwater trophic cascade. Proc. natn. Acad. Sci. USA 93: 7723–7726.CrossRefGoogle Scholar
  4. Carpenter, S. R. & J. F. Kitchell, 1992. Trophic cascade and biomanipulation: Interface of research and management–A reply to the comment by DeMelo et al.. Limnol. Oceanogr. 37: 208–213.CrossRefGoogle Scholar
  5. Carpenter, S. R. & J. F. Kitchell (eds), 1993. The Trophic Cascade in Lakes. Cambridge University Press, Cambridge, ISBN 0-521-43145-X, 385 pp.Google Scholar
  6. Carpenter, S. R., J. F. Kitchell & J. R. Hodgson. 1985. Cascading trophic interactions and lake productivity. BioScience 35: 634–639.CrossRefGoogle Scholar
  7. Carpenter, S. R., J. F. Kitchell, K. L. Cottingham, D. E. Schindler, D. L. Christensen, D. M. Post & N. Voichick, 1996. Chlorophyll variability, nutrient input, and grazing: evidence from whole-lake experiments. Ecology 77: 725–735.CrossRefGoogle Scholar
  8. DeMelo, R., R. France & D. J. McQueen, 1992. Biomanipulation: Hit or myth? Limnol. Oceanogr. 37: 192–207.CrossRefGoogle Scholar
  9. Gophen, M., S. Serruya & P. Spataru, 1990. Zooplankton community changes in Lake Kinneret (Israel) during 1969–1985. Hydrobiologia 191: 39–46.CrossRefGoogle Scholar
  10. Heinonen, P., 1982. On the annual variation of phytoplankton biomass in Finnish inland waters. Hydrobiologia 86: 29–31.CrossRefGoogle Scholar
  11. Helminen, H. & J. Sarvala, 1994a. Population regulation of vendace (Coregonus albula) in Lake Pyhäjärvi, southwest Finland. J. Fish Biol. 45: 387–400.Google Scholar
  12. Helminen, H. & J. Sarvala, 1994b. Changes in zooplanktivory by vendace (Coregonus albula) in Lake Pyhäjärvi (SW Finland) due to variable recruitment. Verh. int. Ver. Limnol. 25: 2128–2131.Google Scholar
  13. Helminen, H. & J. Sarvala, 1997. Responses of Lake Pyhäjärvi (SW Finland) to variable recruitment of the major planktivorous fish, vendace (Coregonus albula). Can. J. Fish. aquat. Sci. 54: 32–40.CrossRefGoogle Scholar
  14. Helminen, H., J. Sarvala & A. Hirvonen, 1990. Growth and food consumption of vendace (Coregonus albula(L.)) in Lake Pyhäjärvi, SW Finland: a bioenergetics modeling analysis. Hydrobiologia 200/201: 511–522.Google Scholar
  15. Helminen, H., K. Ennola, A. Hirvonen & J. Sarvala, 1993a. Fish stock assessment in lakes based on mass removal. J. Fish Biol. 42: 255–263.CrossRefGoogle Scholar
  16. Helminen, H., H. Auvinen, A. Hirvonen, J. Sarvala & J. Toivonen, 1993b. Year-class fluctuations of vendace (Coregonus albula) in Lake Pyhäjärvi, southwest Finland, during 197190. Can. J. Fish. aquat. Sci. 50: 925–931.Google Scholar
  17. Hessen, D. O., B. A. Faafeng & T. Andersen, 1995. Replacement of herbivore zooplankton species along gradients of ecosystem productivity and fish predation pressure. Can. J. Fish. aquat. Sci. 52: 733–742.CrossRefGoogle Scholar
  18. Hirvonen, A. & S. Salonen, 1995. Ravintoketjukunnostuksen alkutaival Köyliönjärvellä (The first stage in restoring Lake Köyliönjärvi by fish removal). Vesitalous 36(3): 11–14; 39 (in Finnish, with English summary).Google Scholar
  19. Jones, R. A. & G. F. Lee. 1986. Eutrophication modeling for water quality management: an update of the Vollenweider-OECD model. WHO Water Quality Bulletin 11: 67–74, 118.Google Scholar
  20. Karjalainen, J. & M. Viljanen, 1993. Changes in the zooplankton community of Lake Puruvesi, Finland, in relation to the stock of vendace (Coregonus albula(L.)). Verh. int. Ver. Limnol. 25: 563–566.Google Scholar
  21. Karjalainen, J., T. Turunen, H. Helminen, J. Sarvala & H. Huuskonen, 1997. Food selection and food consumption of 0+ smelt (Osmerus eperlanus(L.)) and vendace (Coregonus albula(L.)) in the pelagial zone of Finnish lakes. Arch. Hydrobiol. spec. Issues Advanc. Limnol. 49: 37–49.Google Scholar
  22. Kurkilahti, M. & M. Rask, 1996. A comparative study of the usefulness and catchability of multimesh gill nets and gill net series in sampling of perch (Perca fluviatilisL.) and roach (Rutilus rutilus L.). Fish. Res. 27: 243–260.CrossRefGoogle Scholar
  23. Mazumder, A., 1994. Phosphorus-chlorophyll relationships under contrasting herbivory and thermal stratification: predictions and patterns. Can. J. Fish. aquat. Sci. 51: 390–400.CrossRefGoogle Scholar
  24. McQueen, D. J., E. L. Mills, J. L. Forney, M. R. S. Johannes & J. R. Post, 1992. Trophic level relationships in pelagic food webs: comparisons derived from long-term data sets for Oneida Lake, New York (USA), and Lake St. George, Ontario (Canada). Can. J. Fish. aquat. Sci. 49: 1588–1596.CrossRefGoogle Scholar
  25. Mills, E. L. & J. L. Forney, 1983. Impact on Daphnia pulexof predation by yellow perch in Oneida Lake, New York. Trans. am. Fish. Soc. 112: 154–161.CrossRefGoogle Scholar
  26. Mills, E. L. & A. Schiavone Jr., 1982. Evaluation of fish communities through assessment of zooplankton populations and measures of lake productivity. North am. J. Fish. Mgmt. 2: 14–27.CrossRefGoogle Scholar
  27. Ramcharan, C. W., D. J. McQueen, E. Demers, S. A. Popiel, A. M. Rocchi, N. D. Yan, A. H. Wong & K. D. Hughes, 1995. A comparative approach to determining the role of fish predation in structuring limnetic ecosystems. Arch. Hydrobiol. 133: 389–416.Google Scholar
  28. Räsänen, M., V.-P. Salonen, J. Salo, M. Walls & J. Sarvala, 1992. Recent history of sedimentation and biotic communities in Lake Pyhäjärvi, SW Finland. J. Paleolimn. 7: 107–126.Google Scholar
  29. Reshetnikov, Yu. S., O. A. Popova, O. P. Sterligova, V. F. Titova, L. G. Bushman, E. P. Ieshko, N. P. Makarova, R. P. Malakhova, I. V. Pomazovskaya & Yu. A. Smirnov, 1982. Izmenenie struktury rybnogo naseleniya evtrofiruemogo vodoema. Izd. Nauka, Moskva, 248 pp. (in Russian).Google Scholar
  30. Reynolds, C. S., 1994. The ecological basis for the successful biomanipulation of aquatic communities. Arch. Hydrobiol. 130: 1–33.Google Scholar
  31. Sainio, J., 1985. Eräiden limnoplanktisten vesikirppujen populaatiodynamiikkaa Littoistenjärvessä. M.Sc. thesis, Department of Biology, University of Turku, Finland. 64 pp. In Finnish.Google Scholar
  32. Salo, J., M. Walls, M. Rajasilta, J. Sarvala, M. Räsänen & V.-P. Salonen, 1989. Fish predation and reduction in body size in a cladoceran population: palaeoecological evidence. Freshwat. Biol. 21: 217–221.CrossRefGoogle Scholar
  33. Salonen, S., H. Helminen & J. Sarvala, 1996. Feasibility of controlling coarse fish populations through pikeperch (Stizostedion lucioperca) stocking in Lake Köyliönjärvi, SW Finland. Ann. zool. fenn.33: 451–457.Google Scholar
  34. Sarvala, J. & H. Helminen, 1996. Year-class fluctuations of perch (Perca fluviatilis) in Lake Pyhäjärvi, southwest Finland. Ann. zool. fenn. 33: 389–396.Google Scholar
  35. Sarvala, J. & K. Jumppanen, 1988. Nutrients and planktivorous fish as regulators of productivity in Lake Pyhäjärvi, SW Finland. Aqua fenn. 18: 137–155.Google Scholar
  36. Sarvala, J. & H. Perttula, 1994. Littoistenjärvi. Littoistenjärvityöryhmä, Kaarinan kaupunki & Liedon kunta, Kaarina, ISBN 951-97062-08, 80 pp. (in Finnish).Google Scholar
  37. Sarvala, J., H. Helminen & A. Hirvonen, 1994. The effect of intensive fishing on fish populations in Lake Pyhäjärvi, south-west Finland. In I.G. Cowx (ed.), Rehabilitation of freshwater fisheries. Fishing News Books, Oxford: 77–89.Google Scholar
  38. Sarvala, J., H. Helminen, A. Hirvonen & S. Salonen, 1995. Köyliönjärven veden laatu ja siihen vaikuttavat mekanismit (Effects of cyprinid fish reduction on water quality of Lake Köyliönjärvi). Vesitalous 36(3): 15–17, 39 (in Finnish, with English summary).Google Scholar
  39. Sarvala, J., H. Helminen, J.-P. Ripatti, V. Pruuki & J. Ruuhijärvi, 1992. Tehokalastuksen vaikutus Evon Syrjänalusen särkikantaan (Impact of intensive fishing on the roach population in Lake Syrjänalunen, southern Finland). Suomen Kalatalous 60: 191–205 (in Finnish, with English summary).Google Scholar
  40. Sarvala, J., K. Aulio, H. Mölsä, M. Rajasilta, J. Salo & I. Vuorinen, 1984. Factors behind the exceptionally high fish yield in the lake Pyhäjärvi, southwestern Finland–hypotheses on the biological regulation of fish production. Aqua fenn. 14: 49–57.Google Scholar
  41. Sarvala, J., M. Rajasilta, C. Hangelin, A. Hirvonen, M. Kiiskilä & V. Saarikari, 1988. Spring abundance, growth and food of 0+ vendace (Coregonus albulaL.) and whitefish (C. lavaretusL. s.l.) in Lake Pyhäjärvi, SW Finland. Finn. Fish. Res. 9: 221–233.Google Scholar
  42. Schriver, P., J. Bøgestrand, E. Jeppesen & M. Søndergaard, 1995. Impact of submerged macrophytes on fish-zooplankton-phytoplankton interactions: largescale enclosure experiments in a shallow eutrophic lake. Freshwat. Biol. 33: 255–270.CrossRefGoogle Scholar
  43. Vuorinen, I. & J. Nevalainen, 1981. Säkylän Pyhäjärven eläinplanktontutkimus 1980. Lounais-Suomen Vesiensuojeluyhdistys Julkaisu 47: 89–117 (in Finnish).Google Scholar

Copyright information

© Kluwer Academic Publishers 1998

Authors and Affiliations

  • Jouko Sarvala
    • 1
  • Harri Helminen
    • 2
  • Vesa Saarikari
    • 1
  • Seppo Salonen
    • 3
  • Kristiina Vuorio
    • 1
  1. 1.Department of BiologyUniversity of TurkuTurkuFinland
  2. 2.Southwest Finland Regional Environment CentreTurkuFinland
  3. 3.Satakunta Environmental Research CentreUniversity of TurkuPoriFinland

Personalised recommendations