, Volume 363, Issue 1–3, pp 207–217 | Cite as

The use of spectral fluorescence methods to detect changes in the phytoplankton community

  • Jukka Seppälä
  • Maija Balode


In vivo fluorescence methods are efficient toolsfor studying the seasonal and spatial dynamics ofphytoplankton. Traditionally the measurements are madeusing single excitation-emission wavelengthcombination. During a cruise in the Gulf of Riga(Baltic Sea) we supplemented this technique bymeasuring the spectral fluorescence signal (SFS) andfixed wavelength fluorescence intensities at theexcitation maxima of main accessory pigments. Thesemethods allowed the rapid collection of quantitativefluorescence data and chemotaxonomic diagnostics ofthe phytoplankton community. The chlorophylla-specific fluorescence intensities (R) and thespectral fluorescence fingerprints were analysedtogether with concentrations of chlorophyll a indifferent algal size-groups, phytoplankton biomass andtaxonomic position. The lower level of R in thesouthern gulf was related to the higher proportion ofcyanobacteria relative to total biomass and the lowerabundance of small algae. The phycoerythrinfluorescence signal was obviously due to the largecyanobacteria. The basin-wide shift in the shape ofchlorophyll a excitation spectra was caused bythe variable proportions of differently pigmentedcyanobacteria, diatoms and cryptomonads.

in vivofluorescence spectrofluorometry phytoplanktonpigments phytoplankton community structure Gulf of Riga 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alpine, A. E. & J. E. Cloern, 1985. Differences in in vivofluorescence yield between three phytoplankton size classes. J. Plankton Res. 7: 381–390.Google Scholar
  2. Althuis, IJ. A., W. W. C. Gieskes, L. Villerius & F. Colijn, 1994. Interpretation of fluorometric chlorophyll registrations with algal pigment analysis along a ferry transect in the southern North Sea. Neth. J. Sea Res. 33: 37–46.CrossRefGoogle Scholar
  3. Anderson, J. M. & J. Barrett, 1986. Light-harvesting pigment-protein complexes of algae. In L. A. Staehelin & C. J. Arntzen (eds), Photosynthesis III. Encl. Plant Phys.. Springer-Verlag, Berlin, 19: 269–285.Google Scholar
  4. Andrushaitis, A., Z. Seisuma, M. Legzdina & E. Lensh, 1995. River load of the eutrophying substances and heavy metals into the Gulf of Riga. In E. Ojaver (ed.), Ecosystem of the Gulf of Riga between 1920 and 1990. Estonian Academy Publishers, Tallin, 32–40.Google Scholar
  5. Balode, M., 1994. Long-term changes of summer-autumn phytoplankton communities in the Gulf of Riga. In O. Guelorget & A. Lefebvre (eds), Baltic Sea and Mediterranean Sea. A comparative ecological approach of coastal environments and paralic ecosystems. Montpellier: 96–99.Google Scholar
  6. Bryant, D. A., 1986. The cyanobacterial photosynthetic apparatus: Comparison to those of higher plants and photosynthetic bacteria. In T. Platt & W. K. W. Li (eds), Photosynthetic picoplankton. Can. Bull. Fish. aquat. Sci. 214: 423–500.Google Scholar
  7. Cleveland, J. S. & M. J. Perry, 1987. Quantum yield, relative specific absorption and fluorescence in nitrogen-limited Chaetoceros grasilis. Mar. Biol. 94: 489–497.CrossRefGoogle Scholar
  8. Cowles, T. J., R. A. Desiderio & S. Neuer, 1993. In situcharacterization of phytoplankton from vertical profiles of fluorescence emission spectra. Mar. Biol. 115: 217–222.Google Scholar
  9. Edler, L. (ed.), 1979. Recommendations on methods for marine biological studies in the Baltic Sea. BMB Publ. 5: 38 pp.Google Scholar
  10. Falkowski, P. & D. A. Kiefer, 1985. Chlorophyll afluorescence in phytoplankton: relationship to photosynthesis and biomass. J. Plankton Res. 7: 715–731.Google Scholar
  11. Guo, C. & W. M. Dunstan, 1995. Depth-dependent changes in chlorophyll fluorescence number at a Sargasso Sea station. Mar. Biol. 122: 333–339.Google Scholar
  12. Harris, G. P., 1980. The relationship between chlorophyll afluorescence, diffuse attenuation changes and photosynthesis in natural phytoplankton populations. J. Plankton Res. 2: 109–127.Google Scholar
  13. Harris, G. P., 1986. Phytoplankton ecology. Structure, function and fluctuation. Chapman and Hall, London, 384 pp.Google Scholar
  14. Johnsen, G. & E. Sakshaug, 1993. Bio-optical characteristics and photoadaptive responses in the toxic and bloomforming dinoflagellates Gyrodinium aureolum, Gymnodinium galatheanum, and two strains of Prorocentrum minimum. J. Phycol. 29: 627–642.CrossRefGoogle Scholar
  15. Johnsen, G. & E. Sakshaug, 1996. Light harvesting in bloom-forming marine phytoplankton: species-specificity and photoacclimation. In F. L. Figueroa, C. Jimenez, J. L. Pèrez-Llorèns & F. X. Niell (eds), Underwater light and algal photobiology. Sci. Mar. 60: 47–56.Google Scholar
  16. Kiefer, D. A., 1973. Chlorophyll afluorescence in marine centric diatoms: responses of chloroplasts to light and nutrient stress. Mar. Biol. 23: 39–46.CrossRefGoogle Scholar
  17. Kirk, J. O. T., 1983. Light and photosynthesis in aquatic ecosystems. Cambridge University Press, Cambridge, 401 pp.Google Scholar
  18. Kopf, U. & J. Heinze, 1984. 2,7-Bis(diethylamino)phenazoxonium chloride as a quantum counter for emission measurements between 240–700 nm. Analyt. Chem. 56: 1931–1935.CrossRefGoogle Scholar
  19. Kostrichkina, E., B. Kalveka, B. Jansone & A. Ikauniece-Grunde, 1994. Planktonic communities in the conditions of eutrophycation of the Gulf of Riga. In O. Guelorget & A. Lefebvre (eds), Baltic Sea and Mediterranean Sea. A comparative ecological approach of coastal environments and paralic ecosystems. Montpellier: 110–115.Google Scholar
  20. Legendre, L. & S. Demers, 1984. Towards dynamic biological oceanography and limnology. Can. J. Fish. aquat. Sci. 41: 2–19.CrossRefGoogle Scholar
  21. Loftus, M. E. & H. H. Seliger, 1975. Some limitations of the in vivo fluorescence technique. Chesapeake Sci. 16: 79–92.CrossRefGoogle Scholar
  22. Lorenzen, C. J., 1966. A method for continuous measurement of in vivochlorophyll concentration. Deep Sea Res. 13: 223–227.Google Scholar
  23. Mitchell, B. G. & D.A. Kiefer, 1988a. Chlorophyll aspecific absorption and fluorescence excitation spectra for light limited phytoplankton. Deep Sea Res. 35: 639–663.CrossRefGoogle Scholar
  24. Mitchell, B. G. & D. A. Kiefer, 1988b. Variability in pigment specific particulate fluorescence and absorption spectra in the northeastern Pacific Ocean. Deep Sea Res. 35: 665–689.CrossRefGoogle Scholar
  25. Oldham, P. B., E. J. Zillioux & I. M. Warner, 1985. Spectral ‘fingerprinting’ of phytoplankton populations by two-dimensional fluorescence and fourier-transform-based pattern recognition. J. mar. Res. 43: 893–906.CrossRefGoogle Scholar
  26. Owens, T. G., 1991. Energy transformation and fluorescence in photosynthesis. NATO ASI Series G27: 101–137.Google Scholar
  27. Poryvkina, L., S. Babichenko, S. Kaitala, H. Kuosa & A. Shalapjonok, 1994. Spectral fluorescence signature in the characterization of phytoplankton community composition. J. Plankton Res. 16: 1315–1327.Google Scholar
  28. Prézelin, B. B., 1981. Light reactions in photosynthesis. In T. Platt (ed.), Physiological bases of phytoplankton ecology. Can. Bull. Fish. aquat. Sci. 210: 1–43.Google Scholar
  29. Rowan, K. S., 1989. Photosynthetic pigments of algae. Cambridge University Press, Cambridge. 334 pp.Google Scholar
  30. Sakshaug, E., G. Johnsen, K. Andresen & M. Vernet, 1991. Modeling of light-dependent algal photosynthesis and growth: experiments with Barents Sea diatoms Thalassiosira nordenskioeldii and Chaetoceros furcellatus. Deep Sea Res. 38: 415–430.CrossRefGoogle Scholar
  31. SooHoo, J. B., D. A. Kiefer, D. J. Collins & I. S. McDermid, 1986. In vivofluorescence excitation and absorption spectra of marine phytoplankton: I. Taxonomic characteristics and responses to photoadaptation. J. Plankton Res. 8: 197–214.Google Scholar
  32. Strass, V., 1990. On the calibration of large-scale fluorometric chlorophyll measurements from towed undulating vehicles. Deep Sea Res. 37: 525–540.CrossRefGoogle Scholar
  33. Utermöhl, H., 1958. Zur vervollkommung der quantitativen Phytoplankton-Methodik. Verein. theor. angew. Limnol., 9: 1–38.Google Scholar
  34. Vincent, W. F., 1983. Fluorescence properties of the freshwater phytoplankton: three algal classes compared. Br. phycol. J. 18: 5–21.Google Scholar
  35. Waterbury, J. B., S. W. Watson, F. W. Valois & D. G. Franks, 1986. Biological and ecological characterization of the marine unicellular cyanobacterium Synechococcus. In T. Platt & W. K. W. Li (eds), Photosynthetic picoplankton. Can. Bull. Fish. aquat. Sci. 214: 71–120.Google Scholar
  36. Watras, C. J. & A. L. Baker, 1988. Detection of planktonic cyanobacteria by tandem in vivofluorometry. Hydrobiologia 169: 77–84.CrossRefGoogle Scholar
  37. Wintermans, J. F. G. H. & A. De Mots, 1965. Spectrophotometric characteristics of chlorophylls aand band their phaeophytins in ethanol. Biochem. Biophys. Acta 109: 448–453.PubMedGoogle Scholar
  38. Wyman, M., 1992. An in vivomethod for the estimation of phycoerythrin concentrations in marine cyanobacteria (Synechococcus spp.). Limnol. Oceanogr. 37: 1300–1306.CrossRefGoogle Scholar
  39. Yentsch, C. S. & D. A. Phinney, 1985. Spectral fluorescence: an ataxonomic tool for studying the structure of phytoplankton populations. J. Plankton Res. 7: 617–632.Google Scholar
  40. Yentsch, C. S. & C. M. Yentsch, 1979. Fluorescence spectral signatures: The characterization of phytoplankton populations by the use of excitation and emission spectra. J. Mar. Res. 37: 471–483.Google Scholar
  41. Yurkovskis, A., F. Wulff, L. Rahm, A. Andrushaitis & M. Rodiquez-Medina, 1993. A nutrient budget of the Gulf of Riga, Baltic Sea. Estuar. coast. Shelf Sci. 37: 113–127.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1998

Authors and Affiliations

  • Jukka Seppälä
    • 1
  • Maija Balode
    • 2
  1. 1.Tvärminne Zoological StationUniversity of HelsinkiHankoFinland
  2. 2.Institute of Aquatic EcologyUniversity of LatviaSalaspilsLatvia

Personalised recommendations