, Volume 363, Issue 1–3, pp 97–105 | Cite as

Planktonic food web in marine mesocosms in the Eastern Mediterranean: bottom-up or top-down regulation?

  • Paraskevi Pitta
  • Antonia Giannakourou
  • Pascal Divanach
  • Maroudio Kentouri


A mesocosm experiment was conducted in order to studythe structure of the planktonic food web. The dynamicsof pico-, nano- and microplankton populations werefollowed during 40 days in four large (40 m3)enclosures. In three tanks a gradient of addednutrients (nitrogen and phosphorus) was applied, whilea fourth tank was used as a control. On day 14, thetop predator (sea bream Sparus aurata larvae)was introduced into the tanks and part of the watercolumn in each tank was isolated in a plastic bagwithout fish larvae, to act as a control forpredation. Physical parameters, chlorophyll aand nutrient concentrations, as well as planktonconcentrations were monitored. A diatom bloom wasobserved in all four tanks, in the first phase endingwith silicate depletion. Flagellate and dinoflagellateabundance subsequently increased, these organismsbeing limited by zooplankton grazing. The zooplanktonpopulations were controlled by both resources (mostlyflagellates) and predation (by fish larvae) asindicated by the results of the control experiments.

Mesocosms nutrients bacteria phytoplankton zooplankton fish larvae microbial food web E Mediterranean 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Azam, F., T. Fenchel, J. G. Field, J. S. Gray, L. A. Meyer-Reil & F. Thingstad, 1983. The ecological role ofwater-column microbes in the sea. Mar. Ecol. Prog. Ser. 10: 257–263.Google Scholar
  2. Bjornsen, P. K., B. Riemann, S. J. Horsted, T. G. Nielsen & J. Pock-Sten, 1988. Trophic interactions between heterotrophic nanoflagellates and bacterioplankton in manipulated seawater enclosures. Limnol. Oceanogr. 33: 409–420.Google Scholar
  3. Carpenter, S. R., J. F. Kitchell & J. R. Hodgson, 1985. Cascading trophic interactions and lake productivity. Fish predation and herbivory can regulate lake ecosystems. Bioscience 35: 634–639.CrossRefGoogle Scholar
  4. Dolan, J. R. & C. L. Gallegos, 1991. Trophic coupling of rotifers, microflagellates and bacteria during fall months in the Rhode River Estuary. Mar. Ecol. Prog. Ser. 77: 147–156.Google Scholar
  5. Drenner, R. W., S. T. Threlkeld & M. D. McRacken, 1986. Experimental analysis of the direct and indirect effects of an omnivorous filter-feeding clupeid on plankton community structure. Can. J. Fish. aquat. Sci. 43: 1935–1945.Google Scholar
  6. Estrada, M., 1991. Phytoplankton assemblages across a NW Mediterranean front: Changes from winter mixing to spring stratification. In J. D. Ros & N. Prat (eds), Homage to Ramon Margalef; or, Why there is such pleasure in studying nature. Oecol. aquat. 10: 157–185.Google Scholar
  7. Fuhrman, J. A. & C. A. Suttle, 1993. Viruses in marine planktonic systems. Oceanography 6: 51–63.Google Scholar
  8. Gamble, J. C., J. M. Davies & J. H. Steele, 1977. Loch Ewe bag experiment, 1974. Bull. mar. Sci. 27: 146–175.Google Scholar
  9. Horsted, S. J., T. G. Nielsen, B. Riemann, J. Pock-Steen & P. K. Bjornsen, 1988. Regulation of zooplankton by suspension-feeding bivalves and fish in estuarine enclosures. Mar. Ecol. Prog. Ser. 48: 217–224.Google Scholar
  10. Kentouri, M. & P. Divanach, 1983. Contribution à la connaissance du comportement et de la biologie des larves de marbré Lithognathus mormyrus(Sparides) en élevage. Ann. Zootech. 32: 135–152.Google Scholar
  11. Kentouri, M. & P. Divanach, 1986. Sur l’importance des ciliés pélagiques dans l’alimentation des stades larvaires de poissons. Ann. Biol. 25: 307–318.Google Scholar
  12. Kivi, K., H. Kuosa & S. Tanskanen, 1996. An experimental study on the role of crustacean and microprotozoan grazers in the planktonic food web. Mar. Ecol. Prog. Ser. 136: 59–68.Google Scholar
  13. Kivi, K., S. Kaitala, H. Kuosa, J. Kuparinen, E. Leskinen, R. Lignell, B. Marcussen & T. Tamminen, 1993. Nutrient limitation and grazing control of the Baltic plankton community during annual succession. Limnol. Oceanogr. 38: 893–905.Google Scholar
  14. Kleppel, G. S., D. V. Holliday & R. E. Pieper, 1991. Trophic interactions between copepods and microplankton: A question about the role of diatoms. Limnol. Oceanogr. 36: 172–178.CrossRefGoogle Scholar
  15. Krebs, C. J., 1989. Ecological methodology. Harper & Row, New York, 654 pp.Google Scholar
  16. Kuuppo-Leinikki, P., R. Autio, S. Hallfors, H. Kuosa, J. Kuparinen & R. Pajuniemi, 1994. Trophic interactions and carbon flow between picoplankton and protozoa in pelagic enclosures manipulated with nutrients and a top predator. Mar. Ecol. Prog. Ser. 107: 89–102.Google Scholar
  17. Laval-Peuto, M. & F. Rassoulzadegan, 1988. Autofluorescence of marine planktonic Oligotrichina and other ciliates. Hydrobiologia 159: 99–110.Google Scholar
  18. Lignell, R., S. Kaitala & H. Kuosa, 1992. Factors controlling phyto-and bacterioplankton in late spring on a salinity gradient in the northern Baltic. Mar. Ecol. Prog. Ser. 84: 121–131.Google Scholar
  19. Malone, T. C. & H. W. Ducklow, 1990. Microbial biomass in the coastal plume of Chesapeake Bay: phytoplankton-bacterioplankton relationships. Limnol. Oceanogr. 35: 296–312.Google Scholar
  20. Maranger, R., D. F. Bird & S. K. Juniper, 1994. Viral and bacterial dynamics in Arctic sea ice during the spring algal bloom near Resolute, N.W.T., Canada. Mar. Ecol. Prog. Ser. 111: 121–127.Google Scholar
  21. McQueen, D. J., J. R. Post & E. L. Mills, 1986. Trophic relationships in freshwater pelagic ecosystems. Can. J. Fish. aquat. Sci. 43: 1571–1581.CrossRefGoogle Scholar
  22. Northcote, T. G., 1988. Fish in the structure and function of freshwater ecosystems: A ‘topdown’ view. Can. J. Fish. aquat. Sci. 45: 361–379.CrossRefGoogle Scholar
  23. Parsons, T. R., P. J. Harrison & R. Waters, 1978. An experimental simulation of changes in diatom and flagellate blooms. J. exp. mar. Biol. Ecol. 32: 285–294.CrossRefGoogle Scholar
  24. Pierce, R. W. & J. T. Turner, 1992. Ecology of planktonic ciliates in marine food webs. Rev. Aquat. Sci. 6: 139–181.Google Scholar
  25. Pitta, P., 1996. Dynamics of the plankton community in sea bream (Sparus aurata) rearing mesocosms. Ph. D. thesis, University of Crete, Greece, 229 pp.Google Scholar
  26. Porter, K. G. & Y. S. Feig, 1980. The use of DAPI for identifying and counting aquatic microflora. Limnol. Oceanogr. 25: 943–948.Google Scholar
  27. Rassoulzadegan, F. & R. W. Sheldon, 1986. Predator-prey interactions of nanozooplankton and bacteria in an oligotrophic marine environment. Limnol. Oceanogr. 31: 1010–1021.Google Scholar
  28. Riemann, B., H. M. Sorensen, P. K. Bjornsen, S. J. Horsted, L. M. Jensen, T. G. Nielsen & M. Sondergaard, 1990. Carbon budgets of the microbial food web in estuarine enclosures. Mar. Ecol. Prog. Ser. 65: 159–170.Google Scholar
  29. Roff, J. C., K. Middlebrook & F. Evans, 1988. Long-term variability in North Sea zooplankton off the Northumberland coast: productivity of small copepods and analysis of trophic interactions. J.mar. biol. Ass. U.K. 68: 143–164.CrossRefGoogle Scholar
  30. Sanders, R.W., 1991. Mixotrophic protists in marine and freshwater ecosystems. J. Protozool. 38: 76–81.Google Scholar
  31. Shapiro, J. & D. I. Wright, 1984. Lake restoration by biomanipulation: Round Lake, Minnesota, the first two years. Freshwat. Biol. 14: 371–383.CrossRefGoogle Scholar
  32. Sherr, E. B., B. F. Sherr & L. J. Albright, 1987. Bacteria: Link or sink? Science 235: 88–89.Google Scholar
  33. Sherr, E. B., B. F. Sherr, R. D. Fallon & S. Y. NewellL, 1986. Small, aloricate ciliates as a major component of the marine heterotrophic nanoplankton. Limnol. Oceanogr. 31: 177–183.Google Scholar
  34. Stoecker, D. & J. M. Capuzzo, 1990. Predation on Protozoa: its importance to zooplankton. J. Plankton Res. 12: 891–908.Google Scholar
  35. Stoecker, D. K. & D. A. Egloff, 1987. Predation by Acartia tonsa Dana on planktonic ciliates and Rotifers. J. exp. mar. Biol. Ecol. 110: 53–68.CrossRefGoogle Scholar
  36. Strickland, J. D. H. & T. R. Parsons, 1972. A practical handbook of seawater analysis. Can. J. Fish. aquat. Sci. 167: 1–310.Google Scholar
  37. Tranvik, L. J. & J. McN. Sieburth, 1989. Effects of flocculated humic matter on free and attached pelagic microorganisms. Limnol. Oceanogr. 34: 688–699.CrossRefGoogle Scholar
  38. Utermöhl, H., 1958. Zur Vervollkommnung der quantitativen Phytoplankton-methodik.. Mitt. int. Ver. Limnol. 9: 323–332.Google Scholar
  39. Vanni, M. J., 1987. Effects of food availability and fish predation on a zooplankton community. Ecol. Monogr. 57: 61–88.CrossRefGoogle Scholar
  40. Verity, P. G. & V. Smetacek, 1996. Organism life cycles, predation, and the structure of marine pelagic ecosystems. Mar. Ecol. Prog. Ser. 130: 277–193.Google Scholar
  41. Weisse, T., 1991. The annual cycle of heterotrophic freshwater nanoflagellates: Role of bottom-up versus top-down control. J. Plankton Res. 13: 167–185.Google Scholar
  42. Yentsch, C. S. & D. W. Menzel, 1963. A method for the determination of phytoplankton chlorophyll and phaeophytin by fluorescence. Deep Sea Res. 10: 221–231.Google Scholar

Copyright information

© Kluwer Academic Publishers 1998

Authors and Affiliations

  • Paraskevi Pitta
    • 1
  • Antonia Giannakourou
    • 2
  • Pascal Divanach
    • 1
  • Maroudio Kentouri
    • 3
  1. 1.Institute of Marine Biology of CreteCreteGreece
  2. 2.National Center for Marine ResearchAthensGreece
  3. 3.Biology DepartmentUniversity of CreteHeraklion, CreteGreece

Personalised recommendations