, Volume 363, Issue 1–3, pp 157–167 | Cite as

Elemental composition of seston and nutrient dynamics in the Sea of Marmara

  • S. C. Polat
  • S. Tuğrul
  • Y. Çoban
  • O. Basturk
  • I. Salihoglu


The Sea of Marmara, an intercontinental basin with shallow and narrowstraits, connects the Black and Mediterranean Seas. Data obtained during1991–1996 have permitted the determination of the elementalcomposition of seston in the euphotic zone and the N:P ratio of thesubhalocline waters of the Marmara Sea. Since primary production is alwayslimited to the less saline upper layer (15–20 m), of the Marmara Sea,the subhalocline waters of Mediteranean origin are always rich in nutrients(NO3 + NO2 = 8–10 µm, PO4 = 0.8–1.2 µm) but depleted in dissolvedoxygen (30–50 µm) throughout the basin, yielding an -O_2 : N : P ratio of 178 : 9 : 1. Pollution of the surfacewaters since the 60s has modified the subhalocline nutrient chemistryslightly. In the euphotic zone, the N : P ratio of the seston changes from5.9 to 9.5 between the less and more productive periods. Though the biologyof the Marmara has changed significantly during the previous two decades,the close relationship observed between the elemental composition of thesurface seston and the NO3 : PO4 ratio of thesubhalocline waters strongly suggests that during the whole year primaryproduction throughout the basin and POM export to the lower layer remainnitrogen-limited. This suggestion needs to be confirmed by bio-assays,biological studies and sediment trap data from the upper subhaloclinedepths. Nonetheless, the counterflows in the Marmara basin possessrelatively low N : P ratios in both dissolved and particulate nutrients andextend as far as the adjacent seas.

Seston nutrients elemental ratios The Sea of Marmara Black Sea 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alldradge, A. L., U. Passow & B. E. Logan, 1993. The abundance and significance of large, transparent organic particles in the ocean. Deep-Sea Res. 40: 1131–1140.CrossRefGoogle Scholar
  2. Andersen, J. J. & E. C. Carmark, 1974. Observations of chemical and physical fine-structure in a strong pycnocline, Sea of Marmara. Deep-Sea Res. 21: 877–886.Google Scholar
  3. Banse, K., 1994. Grazing and zooplankton production as key controls of phytoplankton production in the open ocean. Oceanography 7: 13–20.Google Scholar
  4. Besiktepe, S. T., E. Özsoy & Ü. Ünlüata, 1993. Filling of the Marmara Sea by the Dardanelles lower layer inflow. DeepSea Res. 40: 1815–1838.CrossRefGoogle Scholar
  5. Besiktepe, S. T., H. I. Sur, E. Özsoy, M. Abdul Latif, T. Oguz & Ü. Ünløata, 1994. The circulation and hydrography of the Marmara Sea. Prog. Oceanog. 34: 285–334.CrossRefGoogle Scholar
  6. Bologa, A. S., 1985. Planktonic primary productivity of the Black Sea: a review. Thallassia Jugoslavica 21/22: 1–22.Google Scholar
  7. Bologa, A. S., N. Bodeanu, A. Petran, V. Tiganus & Y.P. Zaitsev, 1995. Major modifications of the Black Sea benthic and planktonic biota in the last three decades. Bulletin de l’Institut oceanographique, Monaco special, 15: 180–185.Google Scholar
  8. Brewer, P. G. & J. W. Murray, 1973. Carbon, nitrogen and phosphorus in the Black Sea. Deep Sea Res. 20: 803–818.Google Scholar
  9. Cociasu, A., V. Diaconu, L. Teren, I. Nae, L. Popa, L. Drogan & V. Malciu, 1997. Nutrient stocks on the western shelf of the Black Sea in the last three decades. In E. Ozsoy & A. Mikaelyan (eds), Sensitivity to Changes: Black Sea, Baltic Sea and North Sea, NATO ASI Series, Kluwer Academic Publishers.Google Scholar
  10. Copin-Montegut, C. & G. Copin-Montegut, 1983. Stoichiometry of carbon, nitrogen, and phosphorus in marine particulate matter. Deep Sea Res. 30: 31–46.CrossRefGoogle Scholar
  11. Ediger, D. & A. Yilmaz, 1996. Variability of light transparency in physically and biochemically different water masses: Turkish Seas. Fresenis envir. Bull. 5: 133–140.Google Scholar
  12. Ergin, M., M. N. Bodur, D. Ediger, V. Ediger & A. Yýlmaz, 1993. Organic carbon distribution in the surface sediments of the Sea of Marmara and its control by the inflows from the adjacent water masses. Mar. chem. 41: 311–326.CrossRefGoogle Scholar
  13. Epply, R. W., G. Harrison, S. W. Chisholm & E. Stewart, 1977. Particulate organic matter in surface waters off southern California and its relationship to phytoplankton. J. mar. Res. 35: 671–696.Google Scholar
  14. Friederich, G. E., L. A. Codispoti & C. M. Sakamoto, 1990. Bottle and pumpcast data from the 1988 Black Sea expedition. Moneterey Bay Aquarium Res. Inst., Tech. rep. No. 90–3.Google Scholar
  15. Goldman, J. C., J. J. McCarthy & D. G. Peavey, 1979. Growth rate influence on the chemical composition of phytoplankton in oceanic waters. Nature. 279: 210–215.CrossRefGoogle Scholar
  16. Holligan, P. M., E. Fernandez, J. Aiken, W. M. Balch, P. Boyd, P. H. Burkill, M. Finch, S. B. Groom, G. Malin, K. Muller, D. A. Purdie, C. Robinson, C. C. Trees, S. M. Turner & P. van der Wal, 1993. A biogeochemocal study of the coccolithophere, Emiliania huxleyi, in the north Atlantic. Global Biogeochemical Cycles 7: 879–900.Google Scholar
  17. Holm-Hansen, O., C. J. Lorenzen, R. W. Holms & Y. M. H. A. Strickland, 1965. Fluorometric determination of chlorophyll. J. cons. perm. int. explore Mer. 30: 3–15.Google Scholar
  18. Izdar, E., T. Konuk, V. Ittekott, S. Kempe & E.T. Degens, 1987. Particle flux in the Black Sea: Nature of organic matter in the shelf waters of the Black Sea. In E. T. Degens, E. Izdar & S. Honjo (eds), Particle Flux in the Ocean. Mitt. Geol.-Paleont. Inst., Univ. Hamburg, SCOPE/UNEP Sonderband, No: 62, 1–18.Google Scholar
  19. Karl, D.M., J. E. Dore, D. V. Hebel & C. Winn, 1991. Procedures for particulate carbon, nitrogen, phosphorus and total mass analyses used in the US-JGOFS Hawaii Ocean Time-series Program. In D. C. Hurd & D. W. Spencer (eds), Marine Particles: Analysis and Characterization, Geophysical Monograph 63: 71–77.Google Scholar
  20. Kideys, A. E., 1994. Recent dramatic changes in the Black Sea ecosystem: the reason for the sharp decline in Turkish anchovy fisheries. J. mar. Syst. 5: 171–181.CrossRefGoogle Scholar
  21. Kocatas, A., T. Koray, M. Kaya & O.F. Kara, 1993. Fisheries and environment studies in the Black Sea system. Part. 3: A review of the fishery resources and tehir environment in the Sea of Marmara. Studies and Reviews. General Fisheries Council for the Mediteranean. No: 64, Rome, FAO: 87–143.Google Scholar
  22. Mee, L. D., 1992. The Black Sea in crisis. Ambio 21: 278–286.Google Scholar
  23. Miller, A. R., P. Tcheria & H. Charnock, 1970. Medireranean Sea Atlas of Temperatute, Salinity, Oxygen Profiles and Data from the R/V Atlantis and R/V Chain with distribution of Nutrient Chemical Properties.Google Scholar
  24. Morkoç, E. & S. Tu′δrul, 1995. Atýksu kirlili′δinin Ýzmit Körfezinin fiziksel ve biyokimyasal özelliklerine etkisi. Tr. J. enginer. & enviz. Scienc. 19: 87–96 (in Turkish).Google Scholar
  25. Oguz, T., H. Duclow, P. Malanotte-Rizolli, S. Tu{ie167-01}rul, N.P. Nezlin & Ü. Ünlüata, 1996. Simulation of annual plankton productivity cycle in the Black Sea by one-dimensional physical-biological model. J. geophy. Res. 101: 16,585–16,599.Google Scholar
  26. Orhon, D., O. Uslu, S. Meriç, I. Salihoglu & A. Filibeli, 1994. Wastewater management for Istanbul: Basis for treatment and disposal. Envir. Pollut. 84: 167–178.CrossRefGoogle Scholar
  27. Polat, S. Ç. & S. Tu{ie167-02}rul, 1995. Nutrient and organic carbon exchanges between the Black and Marmara seas through the Bosphorus strait. Cont. shelf Res. 15: 1115–1132.CrossRefGoogle Scholar
  28. Polat, S. Ç., 1995. Nutrient and Organic Carbon Budgets in the Sea of Marmara: A Progressive Effort on the Biogeochemical Cycles of Carbon, Nitrogen and Phosphorus. Ph.D. Thesis, Erdemli-Turkey, 215 pp.Google Scholar
  29. Polat, S. Ç. & S. Tu{ie167-03}rul, 1996. Chemical exchange between the Mediterranean and the Black Sea via the Turkish straits. In F. Briand (ed.), Dynamics of Mediterranean Straits and Channels, CIESM Science Series No2. Bulletin Oceanographique Monaco, No special 17: 167–186.Google Scholar
  30. Rieseball, U., 1991a. Particle aggregation during a diatom bloom. I. Physical aspects. Mar. ecol. prog. Ser. 69: 273–280.Google Scholar
  31. Rieseball, U., 1991b. Particle aggregation during a diatom bloom. I. Biological aspects. Mar. ecol. prog. Ser. 69: 281–291.Google Scholar
  32. Redfield, A. C., B.H. Ketchum & F.A. Richards, 1963. The influence of organisms on the composition of sea-water. In M. N. Hill (ed.), The Sea, ideas and observations on progress in the study of the seas. Interscience 2: 26–77.Google Scholar
  33. Richards, F.A., 1965: Anoxic basins and fjords. In J. P. Riley & G. Skirrow (eds), Chemical Oceanography, V.1, Academic Press: 611–645.Google Scholar
  34. Sakshaug, E., K. Andresen, S. Myklestad & Y. Olsen, 1983. Nutrient status of phytoplankton communities in Norwegian waters (marine, brackish, fresh) as revealed by their composition. J. Plankton Res. 5: 175–196.Google Scholar
  35. Sen Gupta, R., 1971. Oceanography of the Black Sea: Inorganic nitrogen compounds. Deep-Sea Res. 18: 457–475.Google Scholar
  36. Serpoianu, G. I. Nae & V. Malciu, 1992. Danube water influence on sea water salinity at the Romanian littoral. Rapports et Procés verbaux des Reunions de la CIESMM. 33: 233.Google Scholar
  37. Shiganova, T., A. N. Tarkan, A. Dede & M. Cebeci, 1995. Distribution of the Ichthyo-Jellplankton Mnemiopsis leidyi (Agassiz, 1865) in the Marmara Sea (October 1992). Turk. J. mar. Sci. 1: 3–12.CrossRefGoogle Scholar
  38. Smetacek, V. S., 1985. Role of sinking in diatom life-history cycles: ecological, evolutionary and geological significance. Mar. Biol. 84: 239–251.CrossRefGoogle Scholar
  39. Sorokin, Yu. I., A. N. Tarkan, B. Ozturk & M. Albay, 1995. Primary production, bacterioplankton and planktonic protozoa in the Marmara Sea. Turk. J. mar. Sci. 1: 37–54.CrossRefGoogle Scholar
  40. Strickland, J. D. H. & T. R. Parsons, 1972. A practical handbook of seawater analysis, 2nd edn., Ottowa, Fisheries Research Board.Google Scholar
  41. Sur, H. I., E. Özsoy & Ü. Ünlüata, 1994. Boundary current instabilities, uppwelling, shelf mixing and eutrophication processes in the Black Sea. Progr. in Oceanogr. 33: 227–264.Google Scholar
  42. Takahashi, T., W. S. Broecker & S. Langer, 1985. Redfield ratio based on chemical data from isopycnal surfaces. J. geophy. Res. 90: 6907–6924.Google Scholar
  43. Tett, P., J. C. Cottrell, D. O. Trew & B. J. B. Wood, 1975. Phosphorus quota and the chlorophyll: carbon ratio in marine phytoplankton. Limnol. Oceanogr. 20: 587–603.CrossRefGoogle Scholar
  44. Tolmazin, D., 1985. Changing coastal oceanography of the Black Sea. Progr. in Oceanogr. 15: 217–276.CrossRefGoogle Scholar
  45. Tu{ie167-04}rul, S., 1993. Comparison of TOC concentrations by persulfate-UV and HTCO techniques in the Marmara and Black Seas. Mar. Chem. 41: 265–270.Google Scholar
  46. Tu{ie167-05}rul, S. & S. Ç. Polat, 1995. Quantitative comparison of the influxes of nutrients and organic carbon into the Sea of Marmara both from antropogenic inputs and from the Black Sea. Water Sci. Techn 32: 115–121.Google Scholar
  47. Uysal, Z., 1996. A net-plankton study in the Bosphorus junction of the Sea of Marmara. Tr. J. Bot. 20: 321–327.Google Scholar
  48. Vinogradov, M. E. & E. A. Shushkina, 1992. Temporal changes in community structure in the open Black Sea. Oceanology 32: 485–491.Google Scholar
  49. Vostokov, S. V. & V. I. Vedernikov, 1988. Living and nonliving particulate organic matter in the euphotic zone of the epipelagic ecosystem. Oceanology 28: 100–105.Google Scholar
  50. Vostokov, S.V., 1996. Suspended matter as a measure of productivity in the western Black Sea. Oceanology 36: 241–247.Google Scholar

Copyright information

© Kluwer Academic Publishers 1998

Authors and Affiliations

  • S. C. Polat
    • 1
  • S. Tuğrul
    • 2
  • Y. Çoban
    • 2
  • O. Basturk
    • 2
  • I. Salihoglu
    • 2
  1. 1.I.U.-Inst. of Marine Scs.and ManagementVefa-IstanbulTurkey
  2. 2.M.E.T.U.-Inst. of Marine SciencesErdemli-IcelTurkey

Personalised recommendations