, Volume 363, Issue 1–3, pp 29–57 | Cite as

Retention versus export food chains: processes controlling sinking loss from marine pelagic systems

  • Paul Wassmann


The role of export and retention food chains forpelagic-benthic coupling is considered by evaluatingdifferent food chain scenarios and processes such asaggregation, grazing and zooplankton-mediated fluxes.The consequences of grazing of primary production bydifferent zooplankton for the vertical export ofparticulate organic matter from the euphotic zone arediscussed. Reference is made to existing data andalgorithms regarding primary production and verticalexport of carbon from the euphotic zone, both onannual and daily time scales. Examples regarding therole of nutrient addition, removal of pelagiccarnivores and zooplankton grazing for vertical fluxare presented. It is speculated how variable grazingimpact of micro- and mesozooplankton, as well asherbivorous, omnivorous and carnivorous feedingstrategies of mesozooplankton could compete withaggregation during phytoplankton blooms and influenceexport fluxes. It is concluded that the transport ofparticulate organic matter to depth not only dependson bottom-up regulation as determined by physicalforcing, but also on the structure and function of theprevailing planktonic food web. Scenarios arepresented which indicate that top-down regulationplays a pivotal role for the regulation of verticalflux. This conclusion may have crucial consequencesfor future biogeochemical programmes investigatingpelagic-benthic coupling in the ocean. The endeavoursof many research programmes are dominated by lines ofthought where straightforward biogeochemistry andbottom-up regulation is the focus. Phyto- andzooplankton as well as process-oriented researchactivities have to be the focal point of futureresearch if the current comprehension of export fromand retention in the upper layers is going to makedistinct progress.

export and retention food chains vertical flux top-downregulation zooplankton global carbon flux 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aksnes, D. L., J. Aure, S. Kaartvedt, T. Magnesen & J. Richard, 1989. Significance of advection for the carrying capacities of fjord populations. Mar. Ecol. Prog. Ser. 50: 263–274.Google Scholar
  2. Aksnes, D. L. & P. Wassmann, 1993. Modelling the significance of zooplankton grazing for export production. Limnol. Oceanogr. 38: 978–985.Google Scholar
  3. Alldredge, A. & G. A. Jackson, 1995. Aggregation in marine systems. Deep-Sea Res. 42: 1–273.Google Scholar
  4. Alldredge, A. L. & M. W. Silver, 1988. Characteristics, dynamics and significance of marine snow. Prog. Oceanogr. 20: 41–82.CrossRefGoogle Scholar
  5. Arashkevitch, E. G., A. V. Drits, T. N. Semenova & V. P. Shevchenko, 1994. Contents, production and sinking rate of faecal pellets of salps and pyrosomas in the southwestern part of the Atlantic ocean. Russian J. aquat. Ecol. 3: 143–153.Google Scholar
  6. Andreassen, I., E.-M. Nöthig & P. Wassmann, 1996. Sedimentation of particulate matter on the shelf of northern Spitzbergen. Mar. Ecol. Prog. Ser. 137: 215–228.Google Scholar
  7. Andreassen, I. J. & P. Wassmann, 1998. Vertical flux of biogenic matter in the marginal ice zone of the Barents Sea in May. Mar. Ecol. Prog. Ser. (in press).Google Scholar
  8. Angel, M. V., 1984. Detrital organic fluxes through pelagic ecosystems. In M. J. R. Fasham (eds), Flows of Energy and Materials in Marine Ecosystems: 475–516.Google Scholar
  9. Asper, V. L., W. G. Deuser, G. A. Knauer & S. E. Lohrenz, 1992. Rapid coupling of sinking particle fluxes between surface and deep ocean waters. Nature 357: 670–672.CrossRefGoogle Scholar
  10. Azam F, T. Fenchel, J. G. Field, J. S. Gray, L. A. Meyer-Reil & F. Thingstad, 1983. The ecological role of water-column microbes in the sea. Mar. Ecol. Prog. Ser. 10: 257–263.Google Scholar
  11. Bacastow, R. & E. Maier-Reimer, 1991. Dissolved organic carbon in modelling the oceanic new production. Global Biogeochem. Cycles 5: 71–85.Google Scholar
  12. Banse, K., 1994. Grazing and zooplankton production as key controls of phytoplankton production in the upper ocean. Oceanography 7: 13–20.Google Scholar
  13. Banse, K., 1995. Zooplankton: Pivotal role in the control of ocean production. ICES J. mar. Sci. 52: 265–277.CrossRefGoogle Scholar
  14. Bathmann, U., 1988. Mass occurrence of Salpa fusiformisin the spring of 1984 off Ireland: implication for sedimentation processes. Mar. Biol. 97: 127–135.CrossRefGoogle Scholar
  15. Bathmann, U., T. Noji & B. von Bodungen, 1990b. Copepod grazing potential in late winter in the Norwegian Sea–a factor in the control of spring phytoplankton growth? Mar. Ecol. Prog. Ser. 60: 225–233.Google Scholar
  16. Bathmann, U., R. Peinert & B. von Bodungen, 1990a. Pelagic origin and fate of sedimenting particles in the Norwegian Sea. Prog. Oceanogr. 24: 117–125.CrossRefGoogle Scholar
  17. Berger, W., V. Smetacek & G. Wefer, 1989. Ocean productivity and paleoproductivity. In W. Berger, V. Smetacek, & G. Wefer (eds), Productivity of the Ocean: Present and Past, John Wiley & Sons, New York: 1–34.Google Scholar
  18. Betzer, P. R., W. J. Showers, E. D. Laws, C. D. Winn, G. R. DiTullio & P.M. Kroopnick, 1984. Primary productivity and particle fluxes on a transect of the equator at 153° W in the Pacific Ocean. Deep Sea Res. 31: 1–11.CrossRefGoogle Scholar
  19. Bloesch, J., 1996. Towards a new regeneration of sediment traps and a better measurement/understanding of settling particle flux in lakes and oceans: A hydrodynamical protocol. Aquat. Sci.: 58: 283–296.CrossRefGoogle Scholar
  20. Bodungen, B. von, 1986. Phytoplankton growth and krill grazing during spring in the Bransfield Strait, Antarctica. Implications for sediment trap collections. Polar Biol. 6: 153–160.CrossRefGoogle Scholar
  21. Bodungen, B. von, A. Antia, E. Bauerfeind, O. Haupt, I. Peeken, R. Peinert, S. Reitmeier, C. Thomsen, M. Voss, M. Wunsch, U. Zeller & B. Zeitzschel, 1995. Pelagic processes and vertical flux of particles: an overview over a long-term comparative study in the Norwegian Sea and Greenland Sea. Geologische Rundschau 84: 28–48.CrossRefGoogle Scholar
  22. Bodungen B. von, G. Fischer, E.-M. Nöthig & G. Wefer, 1987. Sedimentation of krill faeces during spring development of phytoplankton in Bransfield Strait, Antarctica. SCOPE/UNEP 62: 243–257.Google Scholar
  23. Burkill, P. H., E. S. Edwards, A. W. G. John & M. A. Sleigh, 1993. Micro-zooplankton and their herbivorous activity in the northeast Atlantic Ocean. Deep Sea Res. 40: 479–494.CrossRefGoogle Scholar
  24. Carson, C. A., H. W. Ducklow & A. F. Michael, 1994. Annual flux of dissolved organic carbon form the euphotic zone in the northwestern Sargasso Sea. Nature 371: 405–408.CrossRefGoogle Scholar
  25. Dagg, M., 1993. Grazing by the copepod community does not control phytoplankton production in the Subarctic Pacific Ocean. Prog. Oceanogr. 32: 163–183.CrossRefGoogle Scholar
  26. Dam, H. G., M. R. Roman & M. I. Youngbluth, 1995. Downward export of respiratory carbon and dissolved inorganic nitrogen by diel-migrating mesozooplankton at the JGOFS Bermuda timeseries station. Deep Sea Res. 42: 1187–1197.CrossRefGoogle Scholar
  27. Davies, J. M. & R. Payne, 1984. Supply of organic matter to the sediment in the northern North Sea during a spring phytoplankton bloom. Mar. Biol. 78: 315–324.CrossRefGoogle Scholar
  28. Deuser W. G., E. H. Ross & R. F. Anderson, 1981. Seasonality in the supply of sediment to the deep Sargasso Sea and implications for the rapid transfer of matter to the deep ocean. Deep Sea Res. 28: 495–505.CrossRefGoogle Scholar
  29. Drenner, R. W., S. T. Threlkeld, J. D. Smith, J. R. Mummert & P. A. Cantrall, 1989. Interdependence of phosphorous, fish and site effects on phytoplankton biomass and zooplankton. Limnol. Oceanogr. 34: 1315–1321.Google Scholar
  30. Dugdale R. C. & J. J. Goering, 1967. Uptake of new and regenerated forms of nitrogen in primary productivity. Limnol. Oceanogr. 12: 196–206.Google Scholar
  31. Dugdale, R. C., F. P. Wilkerson & H. J. Minas, 1995. The role of a silicate pump in driving new production. Deep Sea Res. 42: 697–719.CrossRefGoogle Scholar
  32. Egge, J. K., 1993. Nutrient control of phytoplankton growth: Effects of macro nutrient composition (N, P, Si) on species succession. Dr. Scient. thesis, Univ. Bergen, 104 pp.Google Scholar
  33. Elser, J. J., D. K. Foster & R. E. Hecky, 1995. Effects of zooplankton on sedimentation in pelagic ecosystems: Theory and test in two lakes of the Canadian shield. Biogeochemistry 30: 143–170.CrossRefGoogle Scholar
  34. Eppley, R. & B. J. Peterson, 1979. Particulate organic flux and planktonic new production in the deep ocean. Nature 282: 677–680.CrossRefGoogle Scholar
  35. Fischer, G., D. Fütterer, R. Gersonde, S. Honjo, D. Ostermann & G. Wefer, 1988. Seasonal variability of particle flux in theWeddell Sea and its relationship to ice cover. Nature 335: 426–428.CrossRefGoogle Scholar
  36. Fransz, H. G. & W. W. C. Gieskes, 1984. The unbalance of phytoplankton and copepods in the North Sea. Rapp. P.-v. Réun. Cons. int. Explor. Mer 183: 218–225.Google Scholar
  37. Frost, 1991. The role of grazing in nutrient-rich areas of the open sea. Limnol. Oceanogr. 36: 1616–1630.Google Scholar
  38. Gifford, D. J., L. M. Fessenden, P. G. R. Garrahan & E. Martin, 1996. Grazing by microzooplankton and mesozooplankton in the high-latitude North Atlantic Ocean: Spring versus summer dynamics. J. Geophys. Res. 100: 6665–6675.CrossRefGoogle Scholar
  39. González H. & V. Smetacek, 1994. The possible role of the cyclopoide copepod Oithonain retarding vertical flux of the zooplankton faecal material. Mar. Ecol. Prog. Ser. 113: 233–246.Google Scholar
  40. Graf, G., 1992. Pelagic-benthic coupling: a benthic perspective. Mar. Biol. Annu. Rev. 30: 149–190.Google Scholar
  41. Hansen, L., 1997. Suspenderte og sedimenterte fekalier langs et transekt over Nordvestbanken, Nord-Norge, i 1994. Cand. Scient. thesis, University of Tromsø, Norway (in Norwegian).Google Scholar
  42. Hargrave, B. T., G. C. Harding, K. F. Drinkwater, T. C. Lambert & W. G. Harrison, 1985. Dynamics of the pelagic food web in St. Georges Bay, southern Gulf of St. Lawrence. Mar. Ecol. Prog. Ser. 20: 221–240.Google Scholar
  43. Haupt, O., 1995. Modellstudien zum pelagischen Stoffumsatz und vertikalen Partickelfluß in der Norwegensee. Ber. Sonderforschungsbereich 313, Univ. Kiel, 60: 1–140.Google Scholar
  44. Hedges, J. I., W. A. Clarke & G. L. Cowie, 1988a. Organic matter sources to the water column and surficial sediments of a marine bay. Limnol. Oceanogr. 33: 1116–1136.Google Scholar
  45. Hedges, J. I., W. A. Clarke & G. L. Cowie, 1988b. Fluxes and reactivities of organic matter in a coastal marine bay. Limnol. Oceanogr. 33: 1137–1152.Google Scholar
  46. Heinrich, A. K., 1962. The life histories of plankton animals and seasonal cycles of plankton communities in the oceans. J. Cons. perm. int. Explor. Mer 27: 15–24.Google Scholar
  47. Heiskanen, A.-S. & K. J. Kononen, 1994. Sedimentation of vernal and late summer phytoplankton communities in the coastal Baltic Sea. Arch. Hydrobiol. 131: 175–198.Google Scholar
  48. Heiskanen, A.-S., T. Tamminen & K. Gundersen, 1996. The impact of planktonic food web structure on nutrient retention and loss from a late summer pelagic system in the coastal northern Baltic Sea. Mar. Ecol. Prog. Ser. 145: 195–208.Google Scholar
  49. Heussner, S., A. Monaco & S. W. Fowler, 1987. Characterisation and vertical transport of settling biogenic particles in the northwestern Mediterranean. In E. T. Degens, E. I Izdar & S. Honjo (eds), Particle Flux in the Ocean, Mitt. Geol.-Paläont. Inst., Univ. Hamburg, SCOPE/UNEP Sonderband 62: 127–147.Google Scholar
  50. Hessen, D. O., J. P. Nilsen & T. O. Eriksen, 1986. Food size spectra and species replacement within herbivorous zooplankton. Int. Revue ges. Hydrobiol. 71: 1–10.Google Scholar
  51. Honjo, S., 1990. Particle fluxes and modern sedimentation in polar oceans. In W. O. Smith, (ed.), Polar Oceanography, Academic Press, New York: 687–739.Google Scholar
  52. Ianora, A. & S. Poulet, 1993. Egg viability in the copepod Temora stylifera. Limnol. Oceanogr. 38: 1615–1626.Google Scholar
  53. Ianora, A., S. Poulet & A. Miralto, 1995. A comparative study of the inhibitory effect of diatoms on the reproductive biology of the copepod Temora stylifera. Mar. Biol. 121: 533–539.CrossRefGoogle Scholar
  54. Iseki, K., 1981. Particulate organic matter transport to the deep sea by salp faecal pellets. Mar. Ecol. Prog. Ser. 5: 55–60.Google Scholar
  55. Ittekot, V., P. Schäfer, S. Honjo & P. J. Depetris, 1996. Particle Flux in the Ocean. John Wiley & Sons Ltd., 372 pp.Google Scholar
  56. Iverson, R., 1991. Control of fish production. Limnol. Oceanogr. 35: 1593–1604.Google Scholar
  57. Jackson, G. A., 1993. Flux feeding as a mechanism for zooplankton grazing and its implications for vertical particulate flux. Limnol. Oceanogr. 38: 1328–1331.CrossRefGoogle Scholar
  58. Jonasdottir, S. H. & T. Kiørboe, 1996. Copepod recruitment and food composition: do diatoms affect hatching success? Mar. Biol. 125: 743–750.CrossRefGoogle Scholar
  59. Karl, D. M., J. R. Christian, J. E. Dore, D. V. Hebel, R. M. Letelier, L. M. Tupas & C. D. Winn, 1996. Seasonal and interannual variability in primary production and particle flux at station ALOHA. Deep-Sea Res. 43: 539–568.CrossRefGoogle Scholar
  60. Keller, A. A. & U. Riebesell, 1989. Phytoplankton carbon dynamics during a winter-spring diatom bloom in an enclosed marine ecosystem: primary production, biomass and loss rates. Mar. Biol. 103: 131–142.CrossRefGoogle Scholar
  61. Keck, A. & P. Wassmann, 1993. Den sibirske kontinentalsokkel og Polhavet. II. Betydning for den globale karbonkretsløp? Naturen 6: 264–272.Google Scholar
  62. Kiørboe, T., 1993. Turbulence, phytoplankton cell size and the structure of pelagic food webs. Adv. mar. Biol. 29: 1–72.Google Scholar
  63. Kiørboe, T., 1996. Material fluxes in the water column. In B. B. Jørgensen & K. Richardson, (eds), Coastal and Estuarine Studies 52, American Geophysical Union, Washington D. C.: 67–94.Google Scholar
  64. Kiørboe, H. & J.-L. Hansen, 1993. Phytoplankton aggregate formation: observations of patterns and mechanisms of cell sticking and the significance of exopolymeric material. J. Plankton Res. 15: 993–1018.Google Scholar
  65. Kiørboe, T., C. Lundsgaard, M. Olesen & J. L. Hansen, 1994. Aggregation and sedimentation processes during a spring phytoplankton bloom: A field experiment to test coagulation theory. J. mar. Res. 52: 297–323.CrossRefGoogle Scholar
  66. Lalli, C. M. & T. R. Pason (1993). Biological Oceanography: An Introduction. Pergamon Press, Oxford, 301 pp.Google Scholar
  67. Lampitt, R. S., T. Noji & B. von Bodungen, 1990. What happens to zooplankton fecal pellets? Implications for material flux. Mar. Biol. 104: 15–23.CrossRefGoogle Scholar
  68. Langeland, A., 1990. Biomanipulation development in Norway. Hydrobiologia 200/201: 535–540.Google Scholar
  69. Laws, E. A., P. K. Bienfang, A. D. Ziemann & L. D. Conquest, 1988. Phytoplankton population dynamics and the fate of production during the spring bloom in Auke Bay, Alaska. Limnol. Oceanogr. 33: 57–65.Google Scholar
  70. Lee, C. & S. Wakeham, 1991. Production, transport and alteration of particulate organic matter in sea water. In P. Wassmann, A. S. Heiskanen & O. Lindahl (eds), Sediment Trap Studies in the Nordic Countries 2. Proceedings. NurmiPrint OY, Nurmijärvi, 61–75.Google Scholar
  71. Legendre, L., 1990. The significance of microalgal blooms for fisheries and for the export of particulate organic carbon in the ocean. J. Plankton Res. 12: 681–699.Google Scholar
  72. Longhurst, A. R. & W. G. Harison, 1989. Vertical nitrogen flux from the oceanic photic zone by diel migrant zooplankton and nekton. Deep Sea Res. 35: 881–889.Google Scholar
  73. Mazumder, A., D. J. McQueen, W. D. Taylor & D. R. S. Lean, 1988. Effects of fertilisation and planktivorous fish (yellow perch) predation on size distribution of particulate phosphorus and assimilated phosphate: Large enclosure experiments. Limnol. Oceanogr. 33: 421–430.CrossRefGoogle Scholar
  74. Noji, T. T., 1991. The influence of macrozooplankton on vertical particulate flux. Sarsia 76: 1–9.Google Scholar
  75. Noji, T. T. & F. Rey, 1996. Old and new perspectives on zooplankton and vertical particulate flux. ICES report cm 1996/O:10, 14 pp.Google Scholar
  76. Nordby, E. & K. S. Tande, 1998. Zooplankton biomass distribution and plankton transport at Nordvestbanken. Sarsia (in prep).Google Scholar
  77. Odate, T., 1994. Plankton abundance and size structure in the northern North Pacific Ocean in early summer. Fish. Oceanogr. 3: 267–278.Google Scholar
  78. Olesen, M. & C. Lundsgaard, 1995. Seasonal sedimentation of autochthonous material from the euphotic zone of a coastal system. Estuar. coast. Shelf-Sci. 41: 475–490.CrossRefGoogle Scholar
  79. Pace, M. L., G. D. Knauer, D. M. Karl & J. H. Martin, 1987. Primary production, new production and vertical flux in the eastern Pacific Ocean. Nature 325: 803–804.CrossRefGoogle Scholar
  80. Passow, U., A. Alldredge & B. Logan, 1994. The role of particulate carbohydrate exudates in the flocculation of diatom blooms. Deep Sea Res. 41: 335–357.CrossRefGoogle Scholar
  81. Pedersen, G., 1995. Factors influencing the size and distribution of the copepod community in the Barents Sea with special emphasis on Calanus finmarchicus(Gunnerus). Dr Scient. thesis, University of Tromsø, Norway.Google Scholar
  82. Peinert, R., B. von Bodungen & V. Smetacek, 1989. Food web structure and loss rates. In W. Berger, V. Smetacek & G. Wefer (eds), Productivity of the Ocean: Present and Past, John Wiley & Sons, New York: 34–48.Google Scholar
  83. Peinert, R., A. Saure, P. Stegmann, C. Stienen, H. Haardt & V. Smetacek, 1982. Dynamics of primary production and sedimentation in a coastal ecosystem. Neth. J. Sea Res. 16: 276–289.CrossRefGoogle Scholar
  84. Pilskaln C. H. & S. Honjo, 1987. The fecal pellet fraction of biogeochemical particle fluxes to the deep sea. Global Biogeochem. Cycles 1: 31–48.CrossRefGoogle Scholar
  85. Platt, T., W. G. Harrison, M. L. Lewis, W. K. W. Li, S. Sathyendranath, R. Smith & A. F. Vezina, 1988. Biological production and the oceans: the case for a consensus. Mar. Ecol. Prog. Ser. 52: 77–88.Google Scholar
  86. Ratkova, T., I. Andreassen & P. Wassmann, 1998. Phytoplankton and protozoa abundance and biomass along a transect across the Nordvestbank, north Norwegian shelf, in 1994. Sarsia (in prep).Google Scholar
  87. Reigstad, M. & P. Wassmann, 1995. The importance of advection for the pelagic-benthic coupling in north Norwegian fjords. Sarsia 80: 245–257.Google Scholar
  88. Reinertsen, H. & Y. Olsen, 1984. Effects of fish elimination an the phytoplankton community of a eutrophic lake. Verh. Int. Ver. Limnol. 22: 649–657.Google Scholar
  89. Riebesell, U., M. Reigstad, P. Wassmann, U. Passow & T. Noji, 1995. On the trophic fate of Phaeocystis pouchetii. VI. Significance of Phaeocystis-derived mucus for vertical flux. Neth. J. Sea. Res. 33: 193–203.CrossRefGoogle Scholar
  90. Sasaki, H., H. Hattori & S. Nishizawa, 1988. Downward flux of particulate matter and vertical distribution of calanoid copepods in the Oyashio water in summer. Deep Sea Res. 35: 505–515.CrossRefGoogle Scholar
  91. Silver, M. W., C. H. Pilskaln & D. Steinberg, 1991. The biologists’ view of sediment trap collections: problems of marine snow and living organisms. In P. Wassmann, A.-S. Heiskanen & O. Lindahl (eds). Sediment Trap Studies in the Nordic countries 2. Proceedings. NurmiPrint OY, Nurmijärvi: 76–93.Google Scholar
  92. Sathyendranath, S. & T. Platt, 1993. Remote sensing of water-column primary production. In W. K. W. Li & S. Y. Maestrini (eds), Measurements of Primary Production from the Molecular to the Global Scales. ICES Marine Science Symposia, Vol. 197: 236–243.Google Scholar
  93. Skjoldal, H. R. & P. Wassmann, 1986. Sedimentation of particulate organic matter and silicium during spring and summer in Lindåspollene, western Norway. Mar. Ecol. Prog. Ser. 30: 49–63.Google Scholar
  94. Smetacek, V., B. von Bodungen, B. Knoppers, R. Peinert, F. Pollehne, P. Stegmann & B. Zeitzschel, 1984. Seasonal stages characterising the annual cycle of an inshore pelagic system. Rapp. P.-v. J. Cons. int. Explor. Mer 183: 126–135.Google Scholar
  95. Staresinic, N., J. Farrington, R. B. Gagosian, C. H. Clifford & E. M. Hulburt, 1983. Downward transport of particulate matter in the Peru coastal upwelling: Role of anchoveta, Engraulis ringens. In E. Suess & J. Thiede (eds), Coastal Upwelling, its Sediment Record. NATO Conference Series IV: 225–240.Google Scholar
  96. Steele, J., 1974. The Structure of Marine Ecosystems. Harvard University Press, Cambridge, Massachusetts.Google Scholar
  97. Suess, E., 1980. Particulate organic carbon flux in the oceans: surface productivity and oxygen utilization. Nature 288: 260–263.CrossRefGoogle Scholar
  98. Taguchi, S., 1982. Sedimentation of newly produced particulate organic matter in a subtropical inlet, Kaneohe Bay, Hawaii. Estuar. coast. Shelf Sci. 14: 533–544.Google Scholar
  99. Tande, K. S., 1991. Calanusin high latitudes. Polar. Res. 10: 389–407.Google Scholar
  100. Takahashi, K., 1986. Seasonal fluxes of pelagic diatoms in the subarctic Pacific 1982–1983. Deep Sea Res. 33: 1225–1251.CrossRefGoogle Scholar
  101. Thingstad, T. F., 1995. Feedback mechanisms between degradation and primary production in the pelagic environment. In M. Beran (ed.), Carbon Sequestration in the Biosphere. Processes and prospects. NATO ASI Series, series I. Global environmental change, 33: 113–128.Google Scholar
  102. Uye, S.-I., 1996. Induction of reproductive failure in the planktonic copepod Calanus pacificusby diatoms. Mar. Ecol. Prog. Ser. 133: 89–97.Google Scholar
  103. Verity, P. & V. Smetacek, 1996. Organism life cycle, predation and the structure of marine pelagic ecosystems. Mar. Ecol. Prog. Ser. 130: 277–293.Google Scholar
  104. Wassmann, P., 1990. Relationship between primary and export production in the boreal, coastal zone of the North Atlantic. Limnol. Oceanogr. 35: 464–471.Google Scholar
  105. Wassmann, P., 1991. Dynamics of primary production and sedimentation in shallow fjords and polls of western Norway. Oceanogr. Mar. Biol. annu. Rev. 29: 87–154.Google Scholar
  106. Wassmann, P., 1993. Regulation of vertical export of particulate organic matter from the euphotic zone by planktonic heterotrophs in eutrophicated aquatic environments. Mar. Pollut. Bull. 26: 636–643.CrossRefGoogle Scholar
  107. Wassmann, P., I. Andreassen, M. Reigstad & D. Slagstad, 1996. Pelagic-benthic coupling in the Nordic Seas: The role of episodic events. P.S.Z.N. I: Mar. Ecol. 17: 447–471.CrossRefGoogle Scholar
  108. Wassmann, P., J. K. Egge, M. Reigstad & D. L. Aksnes, 1997a. Influence of dissolved silicate on vertical flux of particulate biogenic matter. Mar. Pollut. Bull. 33: 10–21.CrossRefGoogle Scholar
  109. Wassmann, P., I. Andreassen & F. Rey, 1998. Seasonal variation of nutrients and suspended biomass along a transect across the Nordvestbank, north Norwegian shelf, in 1994. Sarsia (in prep).Google Scholar
  110. Wassmann, P., R. Peinert & V. Smetacek, 1991. Patterns of production and sedimentation in the boreal and polar Northeast Atlantic. Polar Research 10: 209–228.Google Scholar
  111. Wassmann, P. & D. Slagstad, 1993. Seasonal and interannual dynamics of carbon flux in the Barents Sea: a model approach. Polar Res. 13: 363–372.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1998

Authors and Affiliations

  • Paul Wassmann
    • 1
  1. 1.Norwegian College of Fishery ScienceUniversity of TromsøTromsøNorway

Personalised recommendations