, Volume 363, Issue 1–3, pp 107–115 | Cite as

Coupling of autotrophic and heterotrophic processes in a Baltic estuarine mixing gradient (Pomeranian Bight)

  • Günter Jost
  • Falk Pollehne


Primary production and decompositional processes weremeasured within the mixing gradient of lagoonal andcoastal water of the Pomeranian Bight duringsummer/autumn on four cruises between 1993 and 1995.Although different sampling strategies were applied,the results fitted well in a general pattern. Nearlyall measured variables (e.g. POC, chlorophyll a)appear to be conservatively mixed along the salinitygradient between 2 and 8 PSU which is typicalfor the southern Baltic area. That pattern is,however, not due to a conservative behaviour of thecomponents but to a balanced state of auto- andheterotrophic processes with a continuous, closelycoupled recycling of matter. This is particularlyevident in periods of nutrient limitation. Within themixing gradient, changes were restricted to structuralcomponents (species composition) whereas thefunctional equilibrium was maintained.

Estuarine mixing salinity gradient phytoplankton primary production community respiration bacterial production 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bjørnsen, P. K., 1986. Automatic determination of bacterioplankton biomass by image analysis. Appl. envir. Microbiol. 51: 1199–1204.Google Scholar
  2. Coffin, R. B., D. J. Velinsky, R. Devereux, W. A. Price & L. A. Cifuentes 1990. Stable carbon isotope analysis of nucleic acids to trace sources of dissolved substrates used by estuarine bacteria. Appl. envir. Microbiol. 56: 2012–2020.Google Scholar
  3. Cole, J. J., S. Findlay & M. L. Pace, 1988. Bacterial production in fresh and salt water ecosystems: A cross-system overview. Mar. Ecol. Prog. Ser. 43: 1–10.Google Scholar
  4. Ducklow, H. W., 1982. Chesapeake Bay nutrient and plankton dynamics. 1. Bacterial biomass and production during spring tidal destratification in the York River, Virginia, estuary. Limnol. Oceanogr. 27: 651–659.Google Scholar
  5. Ducklow, H. W. & C. A. Carlson, 1992. Oceanic bacterial production. Adv. Microb. Ecol. 12: 113–181.Google Scholar
  6. Ducklow, H. W. & D. L. Kirchman, 1983. Bacterial dynamics and distribution during a spring diatom bloom in the Hudson River plume, USA. J. Plankton Res. 5: 333–355.Google Scholar
  7. Eppley, R. W., 1981. Relations between nutrient assimilation and growth in phytoplankton with a brief review of estimates of growth rates in the ocean. In T. Platt (ed.), Physiological Bases of Phytoplankton Ecology. Can. Bull. Fish. aquat. Sci. 210: 251–263.Google Scholar
  8. Findlay, S., M. L. Pace, D. Lints & J. J. Cole, 1991. Weak coupling of bacterial and algal production in a heterotrophic ecosystem: The Hudson River estuary. Limnol. Oceanogr. 36: 268–278.Google Scholar
  9. Fuhrman, J., J. W. Ammerman & F. Azam, 1980. Bacterioplankton in the coastal euphotic zone: distribution, activity and possible relationships with phytoplankton. Mar. Biol. 60: 201–207.CrossRefGoogle Scholar
  10. Jacobsen, T. R., L. R. Pomeroy & J. O. Blanton, 1983. Autotrophic and heterotrophic abundance and activity associated with a nearshore front off the Georgia coast, USA. Estuar. coast. Shelf Sci. 17: 509–520.CrossRefGoogle Scholar
  11. Jonas, R. B., J.H. Tuttle, D. L. Stoner & H.W. Ducklow, 1988. Dual-label radioisotope method for simultaneously measuring bacterial production and metabolism in natural waters. Appl. envir. Microbiol. 54: 791–798.Google Scholar
  12. Kirchman, D., B. Petersen & D. Juers, 1984. Bacterial growth and tidal variation in bacterial abundance in the Great Shippewissett Salt Marsh. Mar. Ecol. Prog. Ser. 19: 247–259.Google Scholar
  13. Lochet, K. & M. Leveau, 1990. Transfers between a eutrophic ecosystem, the River Rhone, and an oligotrophic ecosystem, the northwestern Mediterranean Sea. In D. J. Bonin & H. L. Goltermans (eds), Fluxes Between Trophic Levels and Through the Water-Sediment-Interface 207: 95–103.Google Scholar
  14. Pastuszak, M., K. Nagel & G. Nausch, 1996. Variability in nutrient distribution in the Pomeranian Bay in Septermber 1993. Oceanologia 38: 195–225.Google Scholar
  15. Pollehne, F., S. Busch, G. Jost, B. Meyer-Harms, M. Nausch, M. Reckermann, P. Schaening, D. Setzkorn, N. Wasmund & Z. Witek, 1995. Primary production patterns and heterotrophic use of organic material in the Pomeranian Bay (Southern Baltic). Bull. Sea Fish. Inst., Gdynia 3(136): 43–60.Google Scholar
  16. Postel, L., N. Mumm & A. Krajewska-Sołtys, 1995. Metazooplankton distribution in the Pomeranian Bay, (southern Baltic)–species composition, biomass and respiration. Bull. Sea Fish. Inst., Gdynia 3: 61–73.Google Scholar
  17. Powilleit, M., J. Kube, J. Masłowski & J. Warzocha, 1995. Distribution of macrobenthic invertebrates in the Pomeranian Bay (Southern Baltic) in 1993/1994. Bull. Sea Fish. Inst., Gdynia 3: 75–87.Google Scholar
  18. Redfield, A. C., B. H. Ketchum & F. A. Richards, 1963. The influence of organisms on the composition of seawater. In M. N. Hill (ed.), The Sea. John Wiley & Sons, New York, 2: 26–77.Google Scholar
  19. Revelante, N. & M. Gilmartin, 1992. The lateral advection of particulate organic matter ftom the Po delta region during summer stratification, and its implications for the northern Adriatic. Estuar. coast. Shelf Sci. 35: 191–212.Google Scholar
  20. Riemann, B., P. K. Bjørnsen, S. Newell & R. Fallon, 1987. Calculation of cell production of coastal marine bacteria based onmeasured incorporation of (3H)thymidine. Limnol. Oceanogr. 32: 471–476.CrossRefGoogle Scholar
  21. Riemann, B. & M. Søndergaard, 1984. Measurements of diel rates of bacterial secondary production in aquatic environments. Appl. envir. Microbiol. 47: 632–638.Google Scholar
  22. Rybinski, J., E. Niemirycz & Z. Makowski, 1992. Pollution load. In A. Trzosinska (ed.), Marine Pollution (2) An Assessment of the Effects of Pollution in the Polish Coastal Area of the Baltic Sea 1984–1989. National Scientific Committee on Oceanic Research PAS, Gdansk: 21–52.Google Scholar
  23. Shia, F.-K. & H. W. Ducklow, 1994. Temperature regulation of heterotrophic bacterioplankton abundance, production, and specific growth rate in Chesapeake Bay. Limnol. Oceanogr. 39: 1243–1258.Google Scholar
  24. Shia, F.-K. & H. W. Ducklow, 1995. Multiscale variability in bacterioplankton abundance, production, and specific growth rate in a temperate salt-marsh tidal creek. Limnol. Oceanogr. 40: 55–66.CrossRefGoogle Scholar
  25. Siegel, H., M. Gerth & T. Schmidt, 1996. Water exchange in the Pomeranian Bight investigated by satellite data and shipborne measurements. Continental Shelf Res. 16: 1793–1817.CrossRefGoogle Scholar
  26. Simon, M. & F. Azam, 1989. Protein content and protein synthesis rates of planktonic marine bacteria. Mar. Ecol. Prog. Ser. 51: 201–213.Google Scholar
  27. UNESCO, 1994. Protocols for the Joint Global Ocean Flux Study (JGOFS) core measurements. IOC/SCORManual and Guides 29: 128–134.Google Scholar
  28. Valiela, I., 1995. Marine Ecological Processes, 2. Springer, New York, 686 pp.Google Scholar
  29. von Bodungen, B. & B. Zeitzschel, 1996. Die Ostsee als Ökosystem. In G. Rheinheimer (ed.), Meereskunde der Ostsee, 2. Springer-Verlag, Heidelberg: 230–244.Google Scholar
  30. White, P. A., J. Kalff, J. B. Rasmussen & J. M. Gasol., 1991. The effects of temperature and algal biomass on bacterial and specific growth rate in freshwater and marine habitats. Microb. Ecol. 21: 99–118.Google Scholar

Copyright information

© Kluwer Academic Publishers 1998

Authors and Affiliations

  • Günter Jost
    • 1
  • Falk Pollehne
    • 1
  1. 1.Dept. Biological OceanographyBaltic Sea Research InstituteRostockGermany

Personalised recommendations