Skip to main content
Log in

Algal biomass and biogeochemistry in catchments and aquatic ecosystems: scaling of processes, models and empirical tests

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

This paper sets out a conceptual framework formodelling events in aquatic ecosystems as coupledprocesses in catchments, water columns and sediments.This theoretical framework is developed using ideasfrom the behaviour of complex adaptive systems. I showthat it is possible to use similar models for eachsubsystem and that there are analogous processes ineach, differing only in scale. In this framework thephytoplankton appear as ’system canaries‘. Nuisancealgal blooms appear as a result of perturbations tothe system biogeochemistry at a range of scales.Macrophytes are identified as important components ofthe coupled catchment, water, sediment system.Thinking of models of algal blooms as coupled sets ofcatchment, water column and sediment models focusesattention on the flows of materials between thesubsystems. Such flows of dissolved and particulateorganic and inorganic nutrients (carbon, nitrogen andphosphorus) are rarely fully quantified. The balanceof particulate and dissolved organic nutrient loads(including detritus) is an important parameter whichdetermines events in aquatic ecosystems. This balanceis affected by a number of anthropogenic changesincluding land use, trophic state and flow regulation.Scaling of temporal and spatial patterns and processesin catchments, water columns and sediments will needto be further studied if this model framework is to bedeveloped.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahlgren, I., T. Frisk & L. Kamp-Nielsen, 1988. Empirical and theoretical models of phosphorus loading, retention and concentration vs lake trophic state. Hydrobiologia 170: 285–303.

    Google Scholar 

  • Aksnes, D. L.,K.B. Ulvestad, B. M. Balino, J. Berntsen, J.K. Egge & E. Svendsen, 1995. Ecological modelling in coastal waters: towards redictive physical-chemical-biological simulation models. Ophelia 41: 5–36.

    Google Scholar 

  • Aksnes, D. L. & P. Wassmann, 1993. Modelling the significance of zooplankton grazing for export production. Limnol. Oceanogr. 38: 978–985.

    Google Scholar 

  • Baines, S. B., M. L. Pace & D. M. Karl, 1994. Why does the relationship between sinking flux and primary productivity differ between lakes and oceans? Limnol. Oceanogr. 39: 213–226.

    Google Scholar 

  • Bartell, S. M., W. G. Cale, R. V. O’Neill & R. H. Gardner, 1988. Aggregation error: research objectives and relevant model structure. Ecol. Modell. 41: 157–168.

    Google Scholar 

  • Bascompte, J. & R. V. Solé, 1995. Rethinking complexity: modelling spatiotemporal dynamics in ecology. Trends in Ecology and Evolution 10: 361–366.

    Google Scholar 

  • Berlinski, D., 1976. On systems analysis: an essay concerning the limitations of some mathematical models in the social, political and biological sciences. MIT Press, Boston, 185 pp.

    Google Scholar 

  • Betzer, P. R.,W. J. Showers, E. A. Laws, C. D. Winn, G. R. DiTullio & P.M. Kroopnick, 1984. Primary productivity and particle fluxes on a transect of the equator at 15°W in the Pacific Ocean. Deep Sea Research 31: 1–11.

    Google Scholar 

  • Blindow, I., G. Andersson, A. Hargeby & S. Johansson, 1993. Long term pattern of alternative stable states in two shallow eutrophic lakes. Freshwat. Biol. 30: 159–167.

    Google Scholar 

  • Bronmark, C. & S. E. B. Weisner, 1992. Indirect effects of fish community structure on submerged vegetation in shallow, eutrophic lakes: an alternative mechanism. Hydrobiologia 243/244: 293–301.

    Google Scholar 

  • Casti, J., 1996. Lighter than air. Nature 382: 769–770.

    Google Scholar 

  • Clementson, L. A., G. P. Harris, F. B. Griffiths & D. W. Rimmer, 1989. Seasonal and interannual variability in chemical and biological observations in Storm Bay, Tasmania. I: physics, chemistry and the biomass of components of the food chain. Aust. J. mar. Freshwat. Res. 40: 25–38.

    Google Scholar 

  • Cohen, J. & I. Stewart, 1994. The collapse of chaos. Viking, London.

    Google Scholar 

  • Cole, J. J., N. F. Caraco, G. W. Kling & T. K. Kratz, 1994 Carbon dioxide supersaturation in the surface waters of lakes. Science 265: 1568–1570.

    Google Scholar 

  • Costanza, R. & F. H. Sklar, 1985. Articulation, accuracy and effectiveness of mathematical models: a review of freshwater wetland applications. Ecol. Modell. 27: 45–68.

    Google Scholar 

  • Cullen, P., 1990. The turbulent boundary between water science and water management. Freshwat. Biol. 24: 201–209.

    Google Scholar 

  • De Angelis, D. L., 1992. Dynamics of Nutrient Cycling and Food Webs. Chapman and Hall, London, 270 pp.

    Google Scholar 

  • Dennett, D. C., 1995. Darwin’s dangerous idea. Allen Lane, The Penguin Press, London: 586 pp.

    Google Scholar 

  • Durka, W., E.-D. Schultze, G. Gebauer & S. Voerkelius, 1994. effects of forest decline on uptake and leaching of deposited nitrate determined from 15N and 18O measurements. Nature (Lond) 372: 765–767.

    Google Scholar 

  • Fong, P., J. B. Zedler & R. M. Donohoe, 1993. Nitrogen vs phosphorus limitation of algal biomass in shallow coastal lagoons. Limnol. Oceanogr. 38: 906–923.

    Google Scholar 

  • Graneli, W., M. Lindell & L. Travnik, 1996. Photo-oxidative production of dissolved inorganic carbon in lakes of different humic content. Limnol. Oceanogr. 41: 698–706.

    Google Scholar 

  • Gurney, W. S. C., A. H. Ross & N. Brockhuizen, 1995.Coupling the dynamics of species and materials. In Jones, C. E. & J. H. Lawton (eds), Linking Species to Ecosystems. Chapman and Hall, New York: 176–193.

    Google Scholar 

  • Harris, G. P., 1980. Temporal and spatial scales in phytoplankton ecology. Mechanisms, methods, models and management. Can. J. Fish. aquat. Sci. 37: 877–900.

    Google Scholar 

  • Harris, G. P., 1984. Phytoplankton productivity and growth measurements: past, present and future. J. Plankton Res. 6: 219–237.

    Google Scholar 

  • Harris, G. P., 1985. The answer lies in the nesting behaviour. Freshwat. Biol. 15: 375–380.

    Google Scholar 

  • Harris, G. P., 1986. Phytoplankton Ecology: Structure, Function and Fluctuation. Chapman and Hall, London.

    Google Scholar 

  • Harris, G. P., 1994a. Pattern, process and prediction in aquatic ecology–a limnological view of some general ecological problems. Freshwat. Biol. 32: 143–160.

    Google Scholar 

  • Harris, G. P., 1994b. Nutrient loadings and algal blooms inAustralian waters–a discussion paper. Land and Water Resources Research and Development Corporation, Occasional paper No. 12/94, August 1994, LWRRDC, Canberra, ACT, Australia.

    Google Scholar 

  • Harris, G. P., 1996a. Predictive models in spatially and temporally variable freshwater systems. Australian Journal of Ecology, 23 (in press).

  • Harris, G. P., 1996b. A reply to Sarnelle (1996) and some further comments on Harris’s (1994) opinions. Freshwat.Biol. 35: 343–347.

    Google Scholar 

  • Harris, G. P., 1996c. Catchments and aquatic ecosystems: nutrient ratios, flow regulation and ecosystem impacts in rivers like the Hawkesbury-Nepean. Occasional papers, CRC for Freshwater Ecology, University of Canberra, Bruce ACT, 57 pp.

    Google Scholar 

  • Harris, G., G. Batley, D. Fox, D. Hall, P. Jernakoff, R. Molloy, A. Murray, B. Newell, J. Parslow, G. Skyring & S. Walker.1996. The Port Phillip Bay Environmental Study: final report. CSIRO, Dickson, ACT, Australia, 239 pp.

    Google Scholar 

  • Harris, G. P. & G. Baxter, 1995. Interannual variability in phytoplankton biomass and species composition in a subtropical reservoir. Freshwat. Biol. 35: 545–560.

    Google Scholar 

  • Harris, G. P. & F. B. Griffiths, 1987. On means and variances in aquatic food chains and recruitment to the fisheries. Freshwat. Biol. 17: 381–386.

    Google Scholar 

  • Heath, M., 1995. An holistic analysis of the coupling between physical and biological processes in the coastal zone. Ophelia 42: 95–125.

    Google Scholar 

  • Hedin, L. O., 1994. Stable isotopes, unstable forests. Nature (Lond) 372: 725–726.

    Google Scholar 

  • Holling, C. S., 1992. Cross-scale morphology, geometry and dynamics of ecosystems. Ecological Monographs 62: 447–502.

    Google Scholar 

  • Hopkinson, C. S. & J. J. Vallino, 1995. The relationships among man’s activities in watersheds and estuaries: a model of runoff effects on patterns of estuarine communitymetabolism. Estuaries, 18: 598–621.

    Google Scholar 

  • Horgan, J., 1996. The end of science: facing the limits of knowledge in the twilight of the scientific age. Helix. Addison-Wesley, 309 pp.

  • Janse, J. H. & T. Aldenberg, 1990a. Modelling the phosphorus fluxes in the hypertrophic Loosdrecht lakes. Hydrobiol. Bull. 24: 69–89.

    Google Scholar 

  • Janse, J. H. & T. Aldenberg, 1990b. Modelling the eutrophication of the shallow Loosdrecht lakes. Verh. int. Ver. Limnol. 24: 751–757.

    Google Scholar 

  • Janse, J. H., T. Aldenberg & P. R. G. Kramer, 1992. A mathematical model of the phosphorus cycle in Lake Loosdrecht and simulation of additional measures. Hydrobiologia 233: 119–136.

    Google Scholar 

  • Kauffman, S. A., 1993. The Origins of Order. Oxford University Press, Oxford, 709 pp.

    Google Scholar 

  • Kauffman, S. A., 1995. At Home in the Universe. Viking, London, 321 pp.

    Google Scholar 

  • Lohammar, G., 1966. Some observations on horizontal variations in a eutrophic lake. Verh. int. Ver. Limnol. 16: 89–96.

    Google Scholar 

  • Maberly, S. C., 1996. Diel, episodic and seasonal changes in pH and concentrations of inorganic carbon in a productive lake. Freshwat. Biol. 35: 579–98.

    Google Scholar 

  • Malmgren-Hansen, A. & R. Warren, 1992. Management of urban, industrial and agricultural pollution to control coastal eutrophication. In Vollenweider, R. A., R. Marchetti & R. Viviani (eds), Marine Coastal Eutrophication (Science of the Total Environment suppl.). Elsevier, Amsterdam: 1115–1132.

    Google Scholar 

  • Martinova, M. V., 1993. Nitrogen and phosphor compounds in bottom sediments: mechanisms of accumulation, transformation and release. Hydrobiologia 252: 1–22.

    Google Scholar 

  • Moss, B., 1983. TheNorfolk Broadlands: experiments in the restoration of a complex wetland. Biol. Rev. 58: 521–561.

    Google Scholar 

  • Moss, B., 1992. Engineering and biological approaches to the restoration from eutrophication of shallow lakes in which aquatic plant communities are important components. Hydrobiologia 200/201 367–77.

    Google Scholar 

  • Moss, B., 1995. The microwaterscape–a four-dimensional view of interactions among water chemistry, phytoplankton, periphyton, macrophytes, animals and ourselves. Wat. Sci. Tech. 32: 105–116.

    Google Scholar 

  • Nauta, T. A., I. De Vries, A. Markus & L. De Groot, 1992. An integral approach to assess cause-effect relationships in eutrophication of marine systems. In Vollenweider, R. A., R. Marchetti & R. Viviani (eds), Marine Coastal Eutrophication (Science of the Total Environment suppl.). Elsevier, Amsterdam: 1133–1148.

    Google Scholar 

  • Peters, R. H., 1986. The role of prediction in limnology. Limnol. Oceanogr. 31: 1143–1159.

    Google Scholar 

  • Peters, R. H., 1991. A Critique for Ecology. Cambridge University Press, Cambridge, 366 pp.

    Google Scholar 

  • Pimm, S. L., 1991. The Balance of Nature? University of Chicago Press, Chicago, 434 pp.

    Google Scholar 

  • Reynolds, C. S., 1984a. Phytoplankton periodicity: the interactions of form, function and environmental variability. Freshwat. Biol. 14: 111–142.

    Google Scholar 

  • Reynolds, C. S., 1984b. The Ecology of Freshwater Phytoplankton, Cambridge University Press, Cambridge, 184 pp.

    Google Scholar 

  • Reynolds, C. S., 1994. The ecological basis for the successful biomanipulation of aquatic communities. Arch. Hydrobiol. 130: 1–33.

    Google Scholar 

  • Rosenzweig, M. L., 1971. Paradox of enrichment: destabilisation of exploitation ecosystems in ecological time. Science 171: 385–387.

    Google Scholar 

  • Scavia, D., 1980. An ecological model of Lake Ontario. Ecol. Modell. 8: 49–78.

    Google Scholar 

  • Scheffer, M. & R. J. de Boer, 1995. Implications of spatial heterogeneity for the paradox of enrichment. Ecology 76: 2270–2277.

    Google Scholar 

  • Seip, K. L. & H. Ibrekk, 1988. Regression equations for lake management–how far do they go? Verh. int. Ver. Limnol. 23: 778–785.

    Google Scholar 

  • Steele, J. H., 1995. Can ecological concepts span the land and ocean domains? In Powell, T. M. & J. H. Steele (eds), Ecological Time Series. Chapman and Hall, London: 5–19.

    Google Scholar 

  • Thomann, R. V., 1977. Comparison of lake phytoplankton models and loading plots. Limnol. Oceanogr. 22: 370–373.

    Google Scholar 

  • Thomann, R. V., D. M. DiToro, R. P. Winfield & D. J. O’Connor, 1975. Mathematical modelling of phytoplankton. In US EPA (ed.), Lake Ontario. Corvallis, Oregon, USA: EPA-660/3-75-005.

  • Thomann, R. V., D. M. DiToro, D. Scavia & A. Robertson, 1981. Ecosystem and water quality modelling. In Aubert, E. J. & T. L. Richards (eds), IFYGL–The International Field Year of the Great Lakes. US NOAA Gt. Lakes Env. Res. lab., US Dept of Commerce, Ann Arbor, Michigan: 353–366.

    Google Scholar 

  • Thornton, J. A. & W. Rast, 1993. A test of hypotheses relating to the comparative limnology and assessment of eutrophication in semi-arid man-made lakes. In Straskraba, M., J. G. Tundisi & A. Duncan (eds), Comparative Reservoir Limnology and Water Quality Management. Kluwer Academic Publishers, Dordrecht: 1–24.

    Google Scholar 

  • Vollenweider, R. A., 1968. Scientific fundamentals of the eutrophication of lakes and flowing waters, with particular reference to nitrogen and phosphorus as factors in eutrophication. Technical Report DAS/SCI/68.27. OECD, Paris, 182 pp.

    Google Scholar 

  • Vollenweider, R. A., 1969. Moglichkeiten und grenzen elementarer Modelle der Stoffbilanz von Seen. Arch. Hydrobiol. 66: 1–36.

    Google Scholar 

  • Vollenweider, R. A., 1975. Input–output models, with special reference to the phosphorus loading concept in limnology. Schweiz Z. Hydrol. 37: 53–82.

    Google Scholar 

  • Vollenweider, R. A., 1976. Advances in defining critical loading levels for phosphorus in lake eutrophication. Memorie dell’Instituto Italiano di Idrobiologia 33: 53–83.

    Google Scholar 

  • Wetzel, R. G., 1995. Death, detritus and energy flow in aquatic ecosystems. Freshwat. Biol. 33: 83–89.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harris, G.P. Algal biomass and biogeochemistry in catchments and aquatic ecosystems: scaling of processes, models and empirical tests. Hydrobiologia 349, 19–26 (1997). https://doi.org/10.1023/A:1003072907200

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1003072907200

Navigation