Skip to main content
Log in

Environmental and nutritional factors which regulate population dynamics and toxin production in the dinoflagellate Alexandrium catenella

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

The effects of environmental and nutritional factors on population dynamics and toxin production were examined in Alexandrium catenella, maintained in enriched K media in laboratory cultures. Starting with a density of 50 cell ml−1, the dinoflagellate population typically showed a lag phase and an exponential growth phase which lasted 14 days each, and then entered the stationary phase, with a maximal capacity of 12–18,000 cell ml−1-. Population densities showed distinct diurnal patterns, with population growth beginning 2–4 hours in darkness. The optimal physical conditions for growth were pH 8.5,salinity of 30–35‰, temperature of 20–25°C, and photoperiod of 14//10D to 16L/8D. The cell cycle was determined by flow cytometry on synchronized batch cultures maintained at optimal pH, salinity, temperature and under 5 different photoperiod regimes. It was found that the G1 phase was timed to end at approximately 3 h after onset of darkness, and the G2/M phase had begun at 4 hours. Nutrient supply markedly affected population growth. Under optimal physical conditions, the optimal concentrations for macronutrients and micronutrients were: NH+−4- 0.025–0.2 mM,NO−3 0.22–8.83 mM, glycerophosphate0.04–0.06 mM, silicate 0.1–0.54 mM; FeEDTA 0.07–0.11 mM;Co 0.1 µM, Cu 0.005–0.04 µM; Mn 0.22–7.2 µM;Mo 0.03–0.6 µM; Se 0.02–0.1 µM; Zn 0.04–1.6µM; thiamin 0.075–6 µM; vitamin B120.0004–0.004 µM; biotin 0.007–0.015 µM; EDTA5–40 µM.

The toxin profile of A. catenella was determined by HPLC and found to include in descending order: GTX-4, GTX-3, GTX-1, B2, neosaxitoxin, saxitoxin. Toxin content per cell was highest in cell populations in the early exponential phase. The highest toxin per litre medium was recorded at 20°C at the beginning of the stationary phase,when cell density was highest and toxin/cell was still relatively high. At10°C, the cell density was low while the amount of toxin/cell was high;while at 30°C, the population at full capacity was low and the toxin/cell was also low. The population and toxin data thus provided an explanation for the peak level of PSP contamination in shellfish during the months of March–April around the eastern and southern side of Hong Kong and a minor peak extending to the western side in September–October, when the physical conditions of the seawater provided the right environment for toxin accumulation.

Toxin content in the dinoflagellate reached its maximum during the S-phase of the cell cycle. Nitrogen restriction in the medium reduced population growth and toxin production, while phosphorus restriction reduced only population growth but enhanced toxin accumulation in the cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Alam, M. I., C. P. Hsu & Y. Shimizu, 1979. Comparison of toxins in three isolates of Gonyaulax tamarensis(Dinophyceae). J. Phycol. 15: 106–110.

    Article  CAS  Google Scholar 

  • Anderson, D. M. & T. P. O. Cheng, 1988. Intracellular localization of saxitoxins in the dinoflagellate Gonyaulax tamarensis. J. Phycol. 24: 17–22.

    Article  CAS  Google Scholar 

  • Anderson, D. M., D. M. Kulis, J. J. Sullivan & S. Hall, 1990. Toxin composition variations in one isolate of the dinoflagellate Alexandrium fundyense. Toxicon 28: 885–893.

    Article  PubMed  CAS  Google Scholar 

  • Anderson, D. M., 1994. Red tides: Many experts believe these blooms of toxic algae have recently become more prevalent, posing a greater threat to human and marine health. Scient. Am., August 1994: 52–58.

  • Beales, R. W., 1976. A red tide in Brunei’s coastal waters. Brunei Mus. J. 3: 167–182.

    Google Scholar 

  • Bevington, P. R., 1969. Data Reduction and Error Analysis for the Physical Sciences. McGraw-Hill, New York.

    Google Scholar 

  • Boczar, B. A., M. K. Beitler, J. Liston, J. J. Sullivan & R. A. Cattolico, 1988. Paralytic shellfish toxins in Protogonyaulax tamarensis and Protogonyaulax catenellain axenic culture. Pl. Physiol. 88: 1285–1290.

    CAS  Google Scholar 

  • Boyer, G. L., E. J. Schantz & H. K. Schnoes, 1978. Characterization of 11-hydroxysaxitoxin sulfate, amajor toxin in scallops exposed to blooms of the poisonous dinoflagellate Gonyaulax tamarensis. J. chem. Soc. (London) chem. Comm: 889–890.

  • Boyer, G. L., J. J. Sullivan, R. J. Anderson, F. J. R. Taylor, P. J. Harrison & A. D. Cembella, 1986. Use of high performance liquid chromatography to investigate the production of paralytic shellfish toxins by Protogonyaulaxspp. in culture. Mar. Biol. 93: 361–369.

    Article  CAS  Google Scholar 

  • Boyer, G. L., J. J. Sullivan, R. J. Anderson, P. J. Harrison & F. J. R. Taylor, 1987. Effects of nutrient limitation on toxic production and composition in the marine dinoflagellate Protogonyaulax tamarensis. Mar. Biol. 96: 123–128.

    Article  CAS  Google Scholar 

  • Carpenter, E. J. & J. Chang, 1988. Species-specific phytoplankton growth rates via diel DNA synthesis cycles. I. Concept of the method. Mar. Ecol. Prog. Ser. 43: 105–111.

    Google Scholar 

  • Chambers, J. S. & H. W. Magnusson, 1950. Season variations in toxicity of butter clams from selected Alaska beaches. U. S. Fish Wildlife Serv., Spec. sci. Rep., Fish. No. 53: 19.

  • Chan, D. K. O. & S. J. Liu, 1991. Effect of paralytic shellfish poison on the cardioventilatory function of the eel. In N. De Pauw & J. Joyce (eds), Aquaculture and the Environment, Europ. Aquacult. Soc. Spec. Pub. 14: 64–65.

  • Chan, D. K. O. & K. Y. Siu, 1995. Paralytic shellfish poison contamination in finfish mariculture. Europ. Aquacult. Soc. Spec. Pub. 23: 245–246.

    Google Scholar 

  • Cembella, A. D., J. J. Sullivan, G. L. Boyer, F. J. R. Taylor & R. J. Anderson, 1987. Variations in paralytic shellfish toxin composition within the Protogonyaulax tamarensis/catenellaspecies complex; red tide dinoflagellates. Biochem. syst. Ecol. 15: 171–186.

    Article  CAS  Google Scholar 

  • Dean, P. & J. Jett, 1974. Mathematical analysis of DNA distributions derived from flow micro-fluorometry. Cell Biol. 60: 523.

    Article  CAS  Google Scholar 

  • Fox, M. H., 1980. A model for the computer analysis of synchronous DNA distributions by flow cytometry. Cytometry 1: 71–77.

    Article  PubMed  CAS  Google Scholar 

  • Franco, J. M., P. Fernandez & B. Reguera, 1994. Toxin profiles of natural populations and cultures of Alexandrium minutumHalim from Galician (Spain) coastal waters. J. appl. Phycol. 6: 275–279.

    Article  CAS  Google Scholar 

  • Gacutan, R. Q., M. Y. Tabbu, E. J. Aujero & F. Icatlo, Jr., 1985. Paralytic shellfish poisoning due to Pyrodinium bahamensevar. compressa. in Mati, Davao Oriental, Philippines. Mar. Biol. 87: 223–227.

    Article  Google Scholar 

  • Genenah, A. & Y. Shimizu, 1981. Specific toxicity of paralytic shellfish poisons. J. agric. Food Chem. 29: 1289–1291.

    Article  PubMed  CAS  Google Scholar 

  • Gibbard, J. & J. Naubert, 1948. Paralytic shellfish poisoning on the Canadian Atlantic coast. Am. J. publ. Health 38: 550–553.

    Article  CAS  Google Scholar 

  • Hall, S., G. Strichartz, E. Moczydlowski, A. Ravindran & P. B. Reichardt, 1990. The saxitoxins: sources, chemistry, and pharmacology. In S. Hall & G. Strichartz (eds), Marine Toxins. Am. chem. Soc. Symp. Ser. 418: 29–65.

  • Hallegraeff, G. M., C. J. Bolch, S. I Blackburn. & Y. Oshima, 1991. Species of the toxigenic dinoflagellate genus Alexandrium in Southern Australian waters. Bot. Mar. 34: 575–587.

    Article  Google Scholar 

  • Hong Kong Government Environmental Protection Department, 1989–1994. Marine water quality in Hong Kong for 1989, 1990, 1991, 1992, 1993, 1994. Government Printer, Hong Kong.

    Google Scholar 

  • Keller, M. D. & R. R. L Guillard, 1985. Factors significant to marine dinoflagellate culture. In D. M. Anderson, A. W. White, & D. G. Baden (eds), Toxic Dinoflagellates. Elsevier, New York: 113–116.

    Google Scholar 

  • Keller, M. D., R. C. Selvin, W. Claus & R. R. L. Guillard, 1987. Media for the culture of oceanic ultraphytoplankton. J. Phycol. 23: 633–638.

    Article  Google Scholar 

  • Kim, C. H., Y. Sako & Y. Ishida, 1993. Variation of toxin production and composition in axenic cultures of Alexandrium catenellaand A. tamarense. Nipp. Suis. Gakk. 59: 633–639.

    CAS  Google Scholar 

  • Lam, C. W. Y., M. Kodama, D. K. O. Chan, T. Ogata, S. Sato & K. C. Ho, 1989. Paralytic shellfish toxicity in shellfish in Hong Kong. In T. Okaichi, D. M. Anderson & T. Nemoto (eds), Red Tides: Biology, Environmental Science and Toxicology. Proc. First Int. Symp. Red Tides, Japan, 1987, Elsevier, New York: 455–458.

    Google Scholar 

  • MacIsaac, J. J., G. S. Grunseich, H. E. Glover & C. M. Yentsch, 1979. Light and nutrient limitation in Gonyaulax excavata: nitrogen and carbon trace results. In D. L. Taylor & H. H. Seliger (eds), Toxic Dinoflagellate Blooms, Elsevier North Holland, New York: 107–110.

    Google Scholar 

  • MacLean, J. L., 1977. Observations on Pyrodinium bahamense, a toxic dinoflagellate in Papua New Guinea. Limnol. Oceanogr. 22: 234–254.

    Article  Google Scholar 

  • MacLean, J. L., 1979. Indo Pacific red tides. In Taylor & H. H. Seliger (eds), Toxic Dinoflagellate Blooms. D. L. Elsevier North Holland, New York: 173–178.

    Google Scholar 

  • Marquardt, D. W., 1963. An algorithm for least-squares estimation of nonlinear parameters. Soc. ind. appl. Math. 11, 431–441.

    Article  Google Scholar 

  • Meyer, K. F., H. Sommer & P. Schoenholz, 1928. Mussel poisoning. J. prev. Med. 365–394.

  • Meyer, K. F., 1953. Medical Progress: food poisoning. New Engl. J. Med. 249: 765–773, 804–812, 843–852.

    Article  PubMed  CAS  Google Scholar 

  • Ogata, T., T. Ishimaru & M. Kodama, 1987a. Effect of water temperature and light intensity on growth rate and toxicity changes in Protogonyaulax tamarensis. Mar. Biol. 95: 217–220.

    Article  CAS  Google Scholar 

  • Ogata, T., M. Kodama & T. Ishimaru, 1987b. Toxin production in the dinoflagellate Protogonyaulax tamarensis. Toxicon 25: 923–928.

    Article  PubMed  CAS  Google Scholar 

  • Okumura, M., S. Yamada, Y. Oshima & N. Ishikawa, 1994. Characteristics of paralytic shellfish poisoning toxins derived from short-necked clams (Tapes japonica) in Mikawa Bay. Nat. Toxins 2: 141–143.

    PubMed  CAS  Google Scholar 

  • Oshima, Y. & T. Yasumoto, 1979. Analysis of toxins in cultured Gonyaulax excavatacells originating in Ofunato Bay, Japan. In D. L. Taylor & H. H. Seliger (eds), Toxic Dinoflagellate Blooms, Elsevier, New York: 377–380.

    Google Scholar 

  • Oshima, Y., M. Hirota, T. Yasumoto, G. Hallegraeff, S. Blackburn & D. Steffensen, 1989. Production of paralytic shellfish toxins by the dinoflagellate Alexandrium minutumHalim from Australia. Nipp. Suis. Gakk. 55: 925.

    Google Scholar 

  • Oshima, Y, S. I. Blackbum & G. M. Hallegraeff, 1993. Comparative study on paralytic shellfish toxins profiles of dinoflagellate Gymnodinium catenatumfrom three different countries. Mar. Biol. 16: 471–476.

    Article  Google Scholar 

  • Prakash, A., 1967. Growth and toxicity of a marine dinoflagellate, Gonyaulax tamarensis. J. Fish. Res. Bd Can. 24: 1589–1606.

    Google Scholar 

  • Proctor, N. H., S. L. Chan & A. J. Trevor, 1975. Production of saxitoxin by cultures of Gonyaulax catenella. Toxicon 13: 1–9.

    Article  PubMed  CAS  Google Scholar 

  • Sako, Y., C. H. Kim & Y. Ishida, 1992. Mendelian inheritance of paralytic shellfish poisoning toxin in the marine dinoflagellate Alexandrium catenella. Biosci. Biotechnol. Biochem. 56: 692–694.

    Article  CAS  Google Scholar 

  • Sapeika, N., 1958. Mussel poisoning: a recent outbreak. S. african med. J. 32: 527.

    CAS  Google Scholar 

  • Schantz, E. J., J. M. Lynch, G. Vayvada, K. Matsumoto & H. Rapoport, 1966. The purification and characterization of the poison produced by Gonyaulax catenellain axenic culture. Biochemistry 5: 1191–1194.

    Article  PubMed  CAS  Google Scholar 

  • Schmidt, R, J, & A. R. Loeblich III, 1979. A discussion of the systematics of toxic Gonyaulaxspecies containing paralytic shellfish poison. In D. L. Taylor & H. H. Seliger (eds), Toxic Dinoflagellate Blooms. Elsevier, New York: 83–88.

    Google Scholar 

  • Shimizu, Y., M. Alam, Y. Oshima & W. E. Fallon, 1975. Presence of four toxins in red tide infested clams and cultured Gonyaulax tamarensiscells. Biochem. Biophys. Res. Commun. 66: 731–737.

    Article  PubMed  CAS  Google Scholar 

  • Shimizu, Y., C. Hsu, W. E. Fallon, Y. Oshima, I. Miura & I. Nakanisha, 1978. Structure of neosaxitoxin. J. am. chem. Soc. 100: 6791–6793.

    Article  CAS  Google Scholar 

  • Steidinger, K. A., 1975. Basic factors influencing red tides. In V. R. LoCicero (ed.) Proc. first int. Conf. on toxic Dinoflagellates 1974. The Massachusetts Science and Technology Foundation, Wakefield, Mass.: 153–159.

    Google Scholar 

  • Sullivan, J. J., 1987. The determination of PSP toxins by HPLC and Autoanalyzer. In Am. chem. Soc. Symp. Ser. 486: 66–77.

    Google Scholar 

  • Sullivan, J. J. & W. T. Iwaoka, 1983. High pressure liquid chromatographic determination of the toxins associated with paralytic shellfish poisoning. J. Assoc. off. anal. Chem. 66: 297.

    PubMed  CAS  Google Scholar 

  • Sullivan, J. J. & M. M. Wekell, 1987. The application of high performance liquid chromatography in a paralytic shellfish poisoning monitoring program. In D. E. Kramer & J. Liston (eds), Seafood Quality Determination, Elsevier North Holland, New York: 357–371.

    Google Scholar 

  • White, A. W., 1978. Salinity effects on growth and toxin content of Gonyaulax excavata, a marine dinoflagellate causing paralytic shellfish poisoning. J. Phycol. 14: 475–479.

    Article  CAS  Google Scholar 

  • White, A. W. & L. Maranda, 1978. Paralytic shellfish toxins in the dinoflagellate Gonyaulax excavataand in shellfish. J. Fish. Res. Bd Can. 35: 397–402.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Siu, G.K.Y., Young, M.L.C. & Chan, D.K.O. Environmental and nutritional factors which regulate population dynamics and toxin production in the dinoflagellate Alexandrium catenella. Hydrobiologia 352, 117–140 (1997). https://doi.org/10.1023/A:1003042431985

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1003042431985

Navigation