Advertisement

Hydrobiologia

, Volume 346, Issue 1–3, pp 157–168 | Cite as

Influence of Chironomus plumosus larvae on ammonium flux and denitrification (measured by the acetylene blockage- and the isotope pairing-technique) in eutrophic lake sediment

  • Jonas M. Svensson
Article

Abstract

Oxygen uptake, ammonium flux and denitrification were determined insediment from a eutrophic lake in southern Sweden. Part of the sediment wasbioturbated by incubation in a laboratory mesocosm by incubation containing2000 tube-dwelling larvae of Chironomus plumosus L. m−2.Oxygen consumption was increased 2-fold in the bioturbated compared with thenonbioturbated sediment, some 20% of the increase could be explainedby chironomid respiration. There was a net release of ammonium from thebioturbated sediment to the overlying water. Only 11–45% ofthis could be explained on the basis of larval excretion. With increasingnitrate concentration, denitrification of the nitrate coming from the water(dw) increased to a greater extent in the bioturbated than in thenon-bioturbated sediment, whereas denitrification of the nitrate from thecoupled nitrification-denitrification (dn) was unaffected. The acetyleneblockage technique underestimated denitrification by 63–88%compared with the nitrogen isotope pairing technique. The results indicatethat bioturbation by tube-dwelling chironomid larvae can have a major impacton the nitrogen turnover in lake sediment, mobilising the ammonium to thewater and stimulating denitrification by reducing the diffusive barrierblocking nitrate from reaching anoxic zones in the sediment. Under theaerobic conditions under which the experiments were conducted, thebioturbated eutrophic sediment acted as a more pronounced sink for inorganicnitrogen compared with the non-bioturbated sediment.

Ammonium denitrification lake sediment bioturbation Chironomus plumosus isotope pairing acetylene blockage 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aller, R. C. & J. Y. Yingst, 1978. Biogeochemistry of tube-dwellings: a study of the sedentary polychaete Amphitrite ornata(Leidy). J. mar. Res. 36: 201–254.Google Scholar
  2. Andersen, F. Ø. & H. S. Jensen, 1991. The influence of chironomids on decomposition of organic matter and nutrient exchange in a lake sediment. Verh. int. Ver. Limnol. 24: 3051–3055.Google Scholar
  3. Andersen, F. Ø. & E. Kristensen, 1991. Effects of burrowing macrofauna on organic matter decomposition in coastal marine sediments. Symp. zool. Soc. Lond. 63: 69–88.Google Scholar
  4. Balderston, W. L., B. Sherr & W. J. Payne, 1976. Blockage by acetylene of nitrous oxide reduction in Pseudomonas perfectomarinus. Appl. envir. Microbiol. 37: 504–508.Google Scholar
  5. Binnerup, S. J., K. Jensen, N. P. Revsbech, M. H. Jensen & J. Sörensen, 1992. Denitrification, dissimilatory reduction of nitrate to ammonium, and nitrification in a bioturbated estuarine sediment as measured with 15N and microsensor techniques. Appl. envir. Microbiol. 58: 303–313.Google Scholar
  6. Bowden, W. B., 1987. The biogeochemistry of nitrogen in freshwater wetlands. Biogeochem. 4: 313–348.Google Scholar
  7. Brüsch, W. & B. Nilsson, 1991. Nitrate transformation and water movement in a wetland area. In Nitrogen and phosphorus in fresh and marine waters. Project abstracts of the Danish NPo research programme. Miljøstyrelsen, Copenhagen.Google Scholar
  8. Chaney, A. & E. P. Marbach, 1962. Modified reagents for determination of urea and ammonia. Clin. Chem. 8: 130–132.Google Scholar
  9. Chatarpaul, L., J. B. Robinson & N. K. Kaushik, 1979. Role of tubificid worms on nitrogen transformations in stream sediment. J. Fish. Res. Bd Can. 36: 673–678.Google Scholar
  10. Chatarpaul, L., J. B. Robinson, & N. K. Kaushik, 1980. Effects of tubificid worms on denitrification and nitrification in stream sediment. Can. J. Fish. aquat. Sci. 37: 656–663.Google Scholar
  11. Christensen, P. B., L.-P. Nielsen, J. Sørensen & N. P. Revsbech, 1989. Denitrification in nitrate-rich streams: diurnal and seasonal variation related to benthic oxygen metabolism. Limnol. Oceanogr. 35: 640–651.Google Scholar
  12. Cole, J. A., 1988. Physiology, biochemistry and genetics of nitrate dissimilation to ammonia. In Revsbech, N. P. & J. Sørensen (eds), Denitrification in soil and sediments. FEMS Symp. 56: 301–322.Google Scholar
  13. Edwards, R. W. & H. L. J. Rolley, 1965. Oxygen consumption of river muds. J. Ecol. 53: 119.Google Scholar
  14. Fleischer, S., L. Stibe & L. Leonardson, 1991. Restoration of wetlands as a means of reducing nitrogen transport to coastal waters. Ambio 20: 271–272.Google Scholar
  15. Flett, R. J., R. D. Hamilton & N. E. R. Campbell, 1976. Aquatic acetylene-reduction techniques: solutions to several problems. Can. J. Microbiol. 22: 43–51.Google Scholar
  16. Fukuhara, H. & M. Sakamoto, 1987. Enhancement of inorganic nitrogen and phosphate release from lake sediment by tubificid worms and chironimid larvae. Oikos 48: 312–320.Google Scholar
  17. Fukuhara, H. & M. Sakamoto, 1988. Ecological significance of bioturbation of zoobenthos community in nitrogen release from bottom sediments in a shallow eutrophic lake. Arch. Hydrobiol. 113: 425–445.Google Scholar
  18. Fukuhara, H. & K. Yasuda, 1989. Ammonium excretion by some freshwater zoobenthos from eutrophic lake. Hydrobiologia 173: 1–8.Google Scholar
  19. Gardner, W. S., T. F. Nalepa, D. R. Slavens & G. A. Laird, 1983. Patterns and rates of nitrogen release by benthic chironomidae and oligochaeta. Can. J. Fish. aquat. Sci. 40: 259–266.Google Scholar
  20. Granéli, W., 1979a. The influence of Chironomus plumosuslarvae on the exchange of dissolved substances between sediment and water. Hydrobiologia 66: 149–159.Google Scholar
  21. Granéli, W., 1979b. The influence of Chironomus plumosuslarvae on the oxygen uptake of sediment. Arch. Hydrobiol. 87: 385–403.Google Scholar
  22. Hardy, R. W. F., R. C. Burns & R. D. Holsten. 1973. Applications of the acetylene-ethylene assay for measurements of nitrogen fixation. Soil Biol. Biochem. 5: 47–81.Google Scholar
  23. Hargrave, B. T., 1975. Stability in structure and function of the mud-water interface. Verh. int. Ver. Limnol. 19: 1073–1079.Google Scholar
  24. Hauck, R. D., S. W. Melsted & P. E. Yankwich, 1958. Use of Nisotope distribution in nitrogen gas in the study of denitrification. Soil Sci. 86: 287–291.Google Scholar
  25. Henriksen, K., J. I. Hansen & T. H. Blackburn, 1980. The influence of benthic infauna on exchange rates of inorganic nitrogen between sediment and water. Ophelia Suppl. 1: 249–256.Google Scholar
  26. Henriksen, K., M. B. Rasmussen & A. Jensen, 1983. Effect of bioturbation onmicrobial nitrogen transformation in the sediment and fluxes of ammonium and nitrate to the overlaying water. Ecol. Bull. 35: 193–205.Google Scholar
  27. Hynes, R. K. & R. Knowels, 1978. Inhibition by acetylene of ammonia oxidation in Pseudomonas europea. FEMS Microbiol. Lett. 4: 319–321.Google Scholar
  28. Jörgensen, B. B. & N. P. Revsbech, 1985. Diffusive boundary layers and the oxygen uptake of sediments and detritus. Limnol. Oceanogr. 30: 111–122.Google Scholar
  29. Kaspar, H. F., 1982. Denitrification in marine sediment: measurement of capacity and estimate of in situ rate. Appl. envir. Microbiol. 43: 522–527.Google Scholar
  30. Kaspar, H. F. & J. M. Tiedje, 1981. Dissimilatory reduction of nitrate and nitrite in the bovine rumen: nitrous oxide production and effects of acetylene. Appl. envir. Microbiol. 47: 705–709.Google Scholar
  31. Kristensen, E., 1984. Effect of natural concentrations on nutrient exchange between a polychaete burrow in estuarine sediment and the overlaying water. J. exp. mar. Biol. Ecol. 75: 171–190.Google Scholar
  32. Kristensen, E., 1985. Oxygen and inorganic nitrogen exchange in a Nereis virens(Polychaeta) bioturbated sediment–water system. J. coast. Res. 1: 109–116.Google Scholar
  33. Kristensen, E., 1988. Benthic fauna and biogeochemical processes in marine sediments: microbial activities and fluxes. In T. H. Blackburn & J. Sörensen (eds), Nitrogen cycling in coastal marine environments. Wiley & Sons, Chichester.Google Scholar
  34. Kristensen, E., M. H. Jensen & R. C. Aller, 1991. Direct measurement of dissolved inorganic nitrogen exchange and denitrification in individual polychaete (Nereis virens) burrows. J. mar. Res. 49: 355–377.Google Scholar
  35. Lehman, J. T., 1980. Release and cycling of nutrients between planktonic algae and herbivores. Limnol. Oceanogr. 15: 620–632.Google Scholar
  36. Leonardson, L., 1994. Wetlands as nitrogen sinks: Swedish and international experience. Swedish Environmental protection Agency Report no. 4176. (In Swedish with English summary.)Google Scholar
  37. Lohse, L., H. T. Klosterhuis, W. van Raaphorst & W. Helder, 1996. Denitrification rates as measured by the isotope pairing method and by acetylene inhibition technique in continental shelf sediment of the North Sea. Mar. Ecol. Prog. Ser. 132: 169–179.Google Scholar
  38. Lowrance, R., R. Todd, J. Fall, Jr., O. Hendrickson, Jr., R. Leonard & L. Asmussen, 1984. Riparian forests as nutrient filters in agricultural watersheds. BioScience 34: 374–377.Google Scholar
  39. Matisoff, G., J. B. Fisher & S. Matis, 1985. Effects of benthic macroinvertebrates on the exchange of solutes between sediments and freshwater. Hydrobiologia 122: 19–33.Google Scholar
  40. Nichols, D. S., 1983. Capacity of natural wetlands to remove nutrients from wastewater. J. Wat. Pollut. Cont. Fed. 55: 495–505.Google Scholar
  41. Nielsen, L. P., P. B. Christensen, N. P. Revsbech & J. Sørensen, 1990. Denitrification and photosynthesis in stream sediment studied with microsensor and whole-core techniques. Limnol. Oceanogr. 35: 1135–1144.Google Scholar
  42. Nielsen, L. P., 1992. Denitrification in sediment from nitrogen isotope pairing. FEMS Microbiol. Ecol. 86: 357–362.Google Scholar
  43. Oremland, R. S. & D. G. Capone, 1988. Use of ‘specific’ inhibitors in biogeochemistry and microbiol Ecology. In Marshall, K. C. (ed.), Plenum Press, New York, 10: 285–383.Google Scholar
  44. Pelegrí, S. P., L. P. Melsen & T. H. Blackburn, 1994. Denitrification in estuarine sediment stimulated by the irrigation activity of the amphipod Corophium volutator. Mar. Ecol. Progr. Ser. 105: 285–290.Google Scholar
  45. Pelegrí, S. P. & T. H. Blackburn, 1995a. Effect of bioturbation by Nereissp., Mya arenariaand Cerastodermasp. on nitrification and denitrification in estuarine sediments. Ophelia 42: 289–299.Google Scholar
  46. Pelegrí, S. P. & T. H. Blackburn, 1995b. Effects of Tubifex tubifex (Oligochaeta: Tubificidae) on N-mineralization in freshwater sediments, measured with 15N-isotopes. Aquat. Microbial Ecol. 9: 289–294.Google Scholar
  47. PeterJohn, W. T. & D. L. Correll, 1984. Nutrient dynamics in an agricultural watershed: Observations on the role of a riparian forest. Ecology 65: 1466–1475.Google Scholar
  48. Rudolph, J., P. Frenzel & N. Pfennig, 1991. Acetylene inhibition technique underestimates in situ denitrification rates in intact cores of freshwater sediment. FEMS Microb. Ecol. 85: 101–106.Google Scholar
  49. Seitzinger, S. P., 1988. Denitrification in freshwater and coastal marine ecosystems: Ecological and geochemical significance. Limnol. Oceanogr. 33: 702–724.Google Scholar
  50. Seitzinger, S. P., L.-P. Nielsen, J. Caffrey & P. B. Christensen, 1993. Denitrification in aquatic sediments: A comparison of three methods. Biogeochem. 23: 147–167.Google Scholar
  51. Slater, J. M. & D. G. Capone, 1989. Nitrate requirement for acetylene inhibition of nitrous oxide reduction in marine sediments. Geochim. Cosmochim. Acta. 44: 1853–1860.Google Scholar
  52. Svensson, J. M. & L. Leonardson, 1996. Effects of bioturbation by tube-dwelling chironomid larvae on oxygen uptake and denitrification in eutrophic lake sediments. Freshwat. Biol. 35: 289–300.Google Scholar
  53. Sørensen, J., 1978. Denitrification rates in marine sediments as measured by the acetylene inhibition technique. Appl. envir. Microbiol. 36: 139–143.Google Scholar
  54. Sørensen, J., 1987. Nitrate reduction in marine sediment: pathways and interactions with iron and sulfur cycling. Geomicrobiol. J. 5: 401–421.Google Scholar
  55. Sørensen, J., L.-P. Nielsen, P. B. Christensen & N. P. Revsbech, 1990. Denitrifikation og iltomsättning i vandløbssedimenter. NPo-forskning fra Miljøstyrelsen. Nr. C2. Miljöministeriet, Köpenhamn.Google Scholar
  56. Tatrai, I., 1986. Rates of ammonium release from sediments by chironomid larvae., Freshwat. Biol. 16: 61–66.Google Scholar
  57. Tatrai, I., 1988. Excretion of nitrogen and phosphorus by chironomid larvae. Hydrobiol. J. 23: 59–63.Google Scholar
  58. Ullman, W. J. & R. C. Aller, 1989. Nutrient release rates from the sediment of Saginaw Bay, Lake Huron. Hydrobiologia 171: 127–140.Google Scholar
  59. Walter, H. M., D. R. Keeney & I. R. Fillery, 1979. Inhibition of nitrification by acetylene. Soil Sci. Soc. Am. J. 43: 195–196.Google Scholar
  60. van de Bund, W. J., W. Goedkoop & R. K. Johnson, 1994. Effects of deposit-feeder activity on bacterial production and abundance in profundal lake sediment. J. North am. Bent. Soc. 13: 532–539.Google Scholar
  61. Weiss, R. F. & B. A. Price, 1980. Nitrous oxide solubility in water and seawater. Mar. Chem. 8: 347–359.Google Scholar
  62. Wood, E. D., F. A. J. Armstrong & F. A. Richards, 1967. Determination of nitrate in sea water by cadmium-cupper reduction to nitrite. J. mar. Biol. Ass. UK. 47: 23–31.Google Scholar

Copyright information

© Kluwer Academic Publishers 1997

Authors and Affiliations

  • Jonas M. Svensson
    • 1
  1. 1.Department of Ecology/LimnologyUniversity of LundLundSweden

Personalised recommendations