Advertisement

Hydrobiologia

, Volume 346, Issue 1–3, pp 77–84 | Cite as

Effects of cadmium, copper, and zinc on growth and thiol content of aquatic hyphomycetes

  • Jürgen Miersch
  • Felix Bärlocher
  • Ina Bruns
Article

Abstract

The effects of cadmium, copper, and zinc on the growth of ten strains ofaquatic hyphomycetes were investigated. On a solid medium, Cd and Cu reducedradial growth of most strains by 50% at concentrations between150–400 µM; in a liquid medium, the strains were more sensitive.The inhibitory effects of zinc were much less severe. Two isolates(Articulospora tetracladia and Tetracladium marchalianum) from a copper-minestream were more resistant against copper than conspecific strains from anon-polluted stream. Heliscus lugdunensis and Varicosporium elodeaeresponded to Cd exposure, but not to Cu or Zn exposure, by increasedsynthesis of SH-containing compounds. Glutathione levels showed a unimodalresponse to increasing Cd and Zn exposure. With copper, glutathionedecreased at intermediate levels of contamination. In the presence of Cd, H. lugdunensis synthesized several unknown sulfur-rich substances that wereabsent or produced at reduced rates in control cultures.

aquatic hyphomycetes heavy metals sulfur-rich compounds metallothioneins 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abel, T. H. & F. Bärlocher, 1984. Effects of cadmium on aquatic hyphomycetes. Appl. envir. Microbiol. 48: 245–251.Google Scholar
  2. Abel, T. H. & F. Bärlocher, 1988. Uptake of cadmium by Gammarus fossarum(Amphipoda) from food and water. J. appl. Ecol. 25: 223–231.Google Scholar
  3. Anderson, M. E., 1985. Determination of glutathione and glutathione disulfide in biological samples. Meth. Enzymol. 113: 548–555.Google Scholar
  4. Arnebrant, K., E. Baath & A. Nordgren, 1987. Copper tolerance of microfungi isolated from polluted and unpolluted forest soil. Mycologia 79: 890–895.Google Scholar
  5. Ashida, J., 1965. Adaption of fungi to metal toxicity. Ann. Rev. Phytopathol. 3: 153–174.Google Scholar
  6. Baccini, P. & U. Suter, 1979. Chemical speciation and biological availability of copper in lake water. Schweiz. Z. Hydrol. 41: 291–314.Google Scholar
  7. Bärlocher, F., 1987. Aquatic hyphomycete spora in ten streams of New Brunswick and Nova Scotia. Can. J. Bot. 65: 76–79.Google Scholar
  8. Bärlocher, F. (ed.), 1992. The ecology of aquatic hyphomycetes. Springer-Verlag, Heidelberg & Berlin.Google Scholar
  9. Bruns, I., A. Siebert, R. Baumbach, J. Miersch, D. Günther, B. Markert & G.-J. Krauss, 1995. Analysis of heavy metals and sulphurrich compounds in the water moss Fontinalis antipyreticaL. ex Hedw. Fresenius J. Analyt. Chem. 353: 101–104.Google Scholar
  10. Duddridge, J. E. & M. Wainwright, 1980. Heavymetal accumulation by aquatic fungi and reduction in viability of Gammarus pulex fed Cd2+ contaminated mycelium. Wat. Res. 14: 1605–1611.Google Scholar
  11. Ellman, G. L., 1959. Tissue sulfhydryl groups. Arch. Biochem. Biophys. 82: 70–77.Google Scholar
  12. Ernst, W. H. O, 1974. Schwermetallvegetation der Erde. Fischer-Verlag, Stuttgart.Google Scholar
  13. Ernst, W. H. O., J. A. C. Verkleij & H. Schat, 1992. Metal tolerance in plants. Acta Bot. Neerl. 41: 229–248.Google Scholar
  14. Fowler, B. A., C. E. Hildebrand, Y. Kojima & M. Webb, 1987. Nomenclature of metallothioneins. Experientia Suppl. 52: 19–22.Google Scholar
  15. Gadd, G. M., 1993. Tansley Rev. No. 47. Interactions of fungi with toxic metals. New Phytol. 124: 25–60.Google Scholar
  16. Grill, E. L., E. L. Winnacker & M. H. Zenk, 1985. Phytochelatins: The principal heavy-metal complexing peptides of higher plants. Science 230: 674–676.Google Scholar
  17. Grill, E., S. Löffler, E.-L. Winnacker & M. H. Zenk, 1989. Phytochelatins, the heavy metal-binding peptides of plants, are synthesized from glutathione by a specific γ-glutamyl-cysteine dipeptidyl transpeptidase (phytochelatin synthase). Proc. natn. Acad. Sci. USA 86: 6838–6842.Google Scholar
  18. Huang, J.-P., C. P. Huang & A. L Morehart, 1991. Removal of heavy metals by fungal (Aspergillus oryzae) adsorption. In Vernet, J. P. (ed.), Heavy metals in the environment. Elsevier, Amsterdam: 329–349.Google Scholar
  19. Lolklema, P. C., M. H. Donker, A. G. Schouten & W. H. O. Ernst, 1984. The possible role of metallothioneins in copper tolerance of Silene cucubalis. Planta 162: 174–179.Google Scholar
  20. MacKinnon, C. M., 1981. Bryophyte distribution of the Dorchester Copper Mine area. B.Sc. Thesis, Mount-Allison-University Sackville, N.B., Canada.Google Scholar
  21. Maltby, L. & R. Booth, 1991. The effect of coal-mine effluent on fungal assemblages and leaf breakdown. Wat. Res. 25: 247–250.Google Scholar
  22. Markert, B. (ed.), 1993. Plants as biomonitors. VCH-Verlag, Weinhein, Germany.Google Scholar
  23. Merian, E. (ed.), 1991. Metals and their compounds in the environment. VCH-Verlag, Weinheim, Germany.Google Scholar
  24. Neumann, D., O. Lichtenberger, D. Günther, K. Tschiersch & L. Nover, 1994. Heatshock proteins induce heavy-metal tolerance in higher plants. Planta 194: 360–367.Google Scholar
  25. Rauser, W. E., 1990. Phytochelatins. Ann. Rev. Biochem. 59: 61–86.Google Scholar
  26. Rauser, W. E., 1993. Metal-binding peptides in plants. In DeKok, L. J. (ed.), Sulfur nutrition and assimilation in higher plants. SPB Academic Publications, The Hague: 239–251.Google Scholar
  27. Robinson, N. J., A. M. Tommey, C. Kuske & P. J. Jackson, 1993. Plant metallothioneins. Biochem. J. 295: 1–10.Google Scholar
  28. Schat, H. & M. A. Kalff, 1992. Are phytochelatins involved in differential metal tolerance or do they merely reflect metal-imposed strain? Plant Physiol. 99: 1475–1480.Google Scholar
  29. Siebert, A., I. Bruns, G.-J. Krauss, J. Miersch & B. Markert, 1995. The use of Fontinalis antipyreticaL. ex Hedw. as a bioindicator for heavy metals. 1. Fundamental investigations into heavy metal accumulation in Fontinalis antipyreticaL. ex Hedw. Sci. Total Envir. 177: 137–144.Google Scholar
  30. Scheffer, F. & P. Schachtschabel, 1989. Lehrbuch der Bodenkunde. Enke-Verlag, Stuttgart.Google Scholar
  31. Schneider, St. & L. Bergmann, 1995. Regulation of glutathione synthesis in suspension cultures of parsley and tobacco. Bot. Acta 108: 34–40.Google Scholar
  32. Steffens, J. C., 1990. The heavy metal-binding peptides of plants. Ann. Rev. Pl. Physiol. Plant Mol. Biol. 41: 553–575.Google Scholar
  33. Verkleij, J. A. C. & H. Schat, 1990. Mechanism of metal tolerance in higher plants. In Shaw, A. I. C. (ed.), Heavy metal tolerance in plants: evolutionary aspects. CRC Press, Boca Raton, LA, USA: 179–193.Google Scholar
  34. Winkelmann, G. & D. R. Winge (eds), 1994. Metal ions in fungi. Marcel Dekker, New York.Google Scholar

Copyright information

© Kluwer Academic Publishers 1997

Authors and Affiliations

  • Jürgen Miersch
    • 1
  • Felix Bärlocher
    • 2
  • Ina Bruns
    • 1
  1. 1.Institute of BiochemistryMartin-Luther-University Halle-WittenbergHalle/S.Germany
  2. 2.Biology DepartmentMount Allison UniversitySackvilleCanada

Personalised recommendations