Advertisement

Hydrobiologia

, Volume 346, Issue 1–3, pp 169–181 | Cite as

Phytoplankton periodicity and sequences of dominance in an Amazonian flood-plain lake (Lago Batata, Pará, Brasil): responses to gradual environmental change

  • Vera Lúcia de M. Huszar
  • Colin S. Reynolds
Article

Abstract

The composition of the phytoplankton of Lago Batata,a flood-plain lake connected to Rio Trombetas,undergoes a conspicuous annual cycle which is relatedto the hydrology (depth of water, rate of fluvialflushing) and the hydrography (stability, frequency ofmixing of the water) of the lake. From a sparsenanoplankton at high-water and high flushing, the lakepasses to desmid-diatom dominance and finally tofilamentous cyanobacteria when the lake is barely 2 mdeep. As it refills, the lake again becomes desmid-dominated; then, when the turbidity is least and thestratification most stable, Botryococcus becomesa major component. Eventually flushing becomes toorapid for any but the relatively fastest-growingspecies. These changes are gradual and, at the scaleof algal generation times, cannot be explained assharp or sudden disturbances. Neither do they have theproperties of ecological successions but ratherrepresent compositional responses to a progressiveenvironmental modification analogous to the floristicphenomenon of gradual climate change.

phytoplankton succession flood-plain lake Amazon 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anagnostidis, K. & J. Komárek, 1988. Modern approach to the classification system of the Cyanophytes. 3–Oscillatoriales. Arch. Hydrobiol. (Suppl.) 80: 327–472.Google Scholar
  2. Bozelli, R., 1994. Zooplankton community in relation to water-level fluctuations and inorganic turbidity in an Amazonian lake, Lagoa Batata, State of Pará, Brazil. Amazoniana 13: 17–32.Google Scholar
  3. Brasil, 1976. Levantamento de recursos naturais. V. 10, Folha SA 21, Santarém. Ministériodas Minas e Energia, Rio de Janeiro, 522 pp.Google Scholar
  4. Camargo, A. F. M. & R. K. Miyai, 1988. Caracterização limnológica do Lago Curuçá: lago de várzea do Rio Trombetas (águas claras), Pará. Acta Limnol. Brasil. 2: 153–180.Google Scholar
  5. Connell, J. H., 1978. Diversity in tropical rain forests and coral reefs. Science 199: 1302–1310.Google Scholar
  6. Edler, L., 1979. Recommendations for marine biological studies in the Baltic Sea; phytoplankton and chlorophyll. UNESCO (Working Group 11, Baltic Marine Biologists), Paris: 38 pp.Google Scholar
  7. Esteves, F. A., S. M. Thomaz & F. Roland, 1994. Comparison of the metabolism of two floodplain lakes of the Trombetas River (Pará, Brazil) based on a study of diel variation. Amazoniana 13: 33–46.Google Scholar
  8. García de Emiliani, M. O., 1993. Seasonal succession of phytoplankton in a lake of the Paraná River floodplain, Argentina. Hydrobiologia 264: 101–114.Google Scholar
  9. Henry, R., 1995. The thermal structure of some lakes and reservoirs in Brazil. In Tundisi, J. G., C. E. M. Bicudo & T. Matsumura-Tundisi (eds), Limnology in Brazil. ABC/SBL, Rio de Janeiro: 351–363.Google Scholar
  10. Huszar, V. L. de M., 1994. Fitoplâncton de um lago amzônico impactado por rejeito de bauxita (Lago Batata, Pará, Brasil): estrutura da comunidade, flutuações espaciais e temporais. Doctoral thesis, Universidade Federal de São Carlos, São Carlos: 219 pp.Google Scholar
  11. Huszar, V. L. de M., 1996. Floristic composition and biogeographical aspects of phytoplankton of anAmazonian flood-plain lake (Lago Batata, Pará, Brasil). Acta Limnol. Brasil. 6: (in press).Google Scholar
  12. Imberger, J., 1985. Thermal characteristics of standing waters: an illustration of dynamic processes. Hydrobiologia 125: 7–29.Google Scholar
  13. Imberger, J. & P. F. Hamblin, 1982. Dynamics of lakes, reservoirs and cooling ponds. Ann. Rev. fluid Mechs 14: 153–187.Google Scholar
  14. Junk, W., P. B. Bayley & R. E. Sparks, 1989. The flood pulse concept in river floodplain system. Spec. Publ. Can. J. Fish. aquat. Sci. 106: 110–127.Google Scholar
  15. Kilham, S. S. & P. Kilham, 1975. Melosira granulata(Ehr.) Ralfs: morphology and ecology of a cosmopolitan freshwater diatom. Verh. int. Ver. theor. angew. Limnol. 19: 2716–2721.Google Scholar
  16. Lewis Jr., W. M., 1978. Analysis of succession in a tropical phytoplankton community and a new measure of succession rate. Am. Nat. 112: 401–414.Google Scholar
  17. Lewis, Jr., W. M., 1983. A revised classification of lakes based on mixing. Can. J. Fish. aquat. Sci. 40: 1779–1787.Google Scholar
  18. Macintyre, S. & J. Melack, 1988. Frequency and depth of vertical mixing in an Amazon floodplain lake (L. Calado, Brazil). Verh. int. Ver. theor. angew. Limnol. 23: 980–985.Google Scholar
  19. Melo, S., 1996. Influência do ciclo hidrológico sobre as variações nictermerais do fitoplâncton de um lago Amazônico (Lago Batata, Pará, Brasil). Dissertation, Universidade Federal de Rio de Janeiro, Rio de Janeiro: 76 pp.Google Scholar
  20. Neiff, J. J., 1990. Ideas for the ecological interpretation of the Paraná river. Interciencias 15: 424–441.Google Scholar
  21. Odum, E. P., 1969. The strategy of ecosystem development. Science 164: 262–270.Google Scholar
  22. Olrik, K., 1994. Phytoplankton–Ecology. Miljøministiert, København: 183 pp.Google Scholar
  23. Padisák, J., 1994. Identification of relevant time scales in nonequilibrium community dynamics: conclusions of phytoplankton surveys. New Zeal. J. Ecol. 18: 169–176.Google Scholar
  24. Panosso, R. F., 1993. Influência do regime hidrológico e das características morfométricas sobre algumas variáveis limnológicas de um lago amazônico (Lago Batata) impactado por rejeito de bauxita. Dissertation, Universidade Federal de Rio de Janeiro, Rio de Janeiro: 120 pp.Google Scholar
  25. Reynolds, C. S., 1980. Phytoplankton assemblages and their periodicity in stratifying lake systems. Holarct. Ecol., 3: 141–159.Google Scholar
  26. Reynolds, C. S., 1984. Phytoplankton periodicity: the interaction of form, function and environmental variability. Freshwat. Biol. 14: 111–142.Google Scholar
  27. Reynolds, C. S., 1988. The concept of ecological succession applied to seasonal periodicity of freshwater phytoplankton. Verh. int. Ver. theor. angew. Limnol. 23: 683–691.Google Scholar
  28. Reynolds, C. S., 1993. Scales of disturbances and their role in plankton ecology. Hydrobiologia 249: 157–171.Google Scholar
  29. Reynolds, C. S., 1994. The long, the short and the stalled: on the attributes of phytoplankton selected by physical mixing in lakes and rivers. Hydrobiologia 289: 9–21.Google Scholar
  30. Reynolds, C. S.& J. W. G. Lund, 1988. The phytoplankton of an enriched, soft-water lake subject to intermittent hydraulic flushing (Grasmere, English Lake District). Freshwat. Biol. 19: 379–404.Google Scholar
  31. Reynolds, C. S., V. Montecino, M-E. Graf & S. Cabrera, 1986. Short-term dynamics of a Melosirapopulation in the plankton of an impoundment in central Chile. J. Plankton Res. 8: 715–740.Google Scholar
  32. Roland, F. & F. A. Esteves, 1993. Dynamics of phosphorus, carbon and nitrogen in Amazonian Lake impacted by bauxite tailing (Batata Lake, Pará, Brasil). Verh. int. Ver. theor. angew. Limnol. 25: 925–930.Google Scholar
  33. Shannon, C. E. & W. Weaver, 1963. The mathematical theory of communication. Illinois University Press, Urbana: 177 pp.Google Scholar
  34. Sioli, H., 1984. The Amazon; Limnology and landscape ecology of a mighty tropical river and its basin. Dr W. Junk Publishers, Dordrecht, 763 pp.Google Scholar
  35. Tundisi, J. G., B. Forsberg, A. H. Devol, T. M. Zaret, T. Matsumura-Tundisi, A. Santos, J. S. Ribeiro & E. R. Hardy, 1984. Mixing patterns in Amazon lakes. Hydrobiologia 108: 3–15.Google Scholar
  36. Uhlmann, D., 1971. Influence of dilution, sinking and grazing rate on phytoplakton populations of hyperfertilized ponds and microecosystems. Mitt. int. Ver. theor. angew. Limnol. 19: 100–124.Google Scholar
  37. Utermöhl, H., 1958. Zur Vervollkomnung der quantitativen Phytoplankton-Methodik. Mitt. int. Ver. theor. angew. Limnol. 9: 1–38.Google Scholar
  38. Wilson, J. B., 1994. The intermediate disturbance hypothesis is based on patch dynamics. New Zeal. J. Ecol. 18: 176–181.Google Scholar

Copyright information

© Kluwer Academic Publishers 1997

Authors and Affiliations

  • Vera Lúcia de M. Huszar
    • 1
  • Colin S. Reynolds
    • 2
  1. 1.Laboratory of Phycology, Dept. Botany, Museu NacionalUniversidade Federal do Rio de JaneiroRio de JaneiroBrasil
  2. 2.Freshwater Biological AssociationNERC Institute of Freshwater EcologyCumbriaUK

Personalised recommendations