Automation and Remote Control

, Volume 62, Issue 3, pp 391–400 | Cite as

Identification of Discrete Linear Objects with a Large Signal-to-Noise Ratio

  • A. L. Bunich


The convergence and rate of convergence of an estimation algorithm with dead zone for passive identification and identification via test signals in the control loop are investigated.


Mechanical Engineer System Theory Estimation Algorithm Test Signal Control Loop 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Shi, D.H. and Kozin, F., An Almost Sure Convergence of Adaptive Algorithms, IEEE Trans. Autom. Control, 1986, vol. 31, 35, pp. 471–474.Google Scholar
  2. 2.
    Kashiap, R.L., Dynamic Stochastic Models from Empirical Data, New York: Academic, 1976.Google Scholar
  3. 3.
    Krzyak, A., The Rates of Convergence of Kernel Regression Estimates and Classification Rules, IEEE Tran. Inf. Theory, 1986, vol. 32, no. 5, pp. 668–679.Google Scholar
  4. 4.
    Nazin, A.B. and Yuditskii, A.B., Attainable Information Bounds in Adaptive Control of Nonlinear Stochastic Systems under Nonparametric Uncertainty, Avtom. Telemekh., 1999, no. 3, pp. 180–196.Google Scholar
  5. 5.
    Perel'man, I.I., Modern Adaptive Control Methods: An Analysis from the Standpoint of Application to Automaton of Technological Processes, Avtom. Telemekh., 1991, no. 7, pp. 3–32.Google Scholar
  6. 6.
    Klaasen Chris, A.J., Location Estimators and Spread, Ann. Statist., 1984, vol. 12, no. 1, pp. 311–321.Google Scholar
  7. 7.
    Bunich, A.L., A Rapidly Converging Identification Algorithm for Linear Objects with Bounded Noise, Avtom. Telemekh., 1983, no. 8, pp. 101–107.Google Scholar
  8. 8.
    Poznyak, A.S. and Tikhonov, S.N., Strong Consistency of the Extended Least-Squares Method with Nonlinear Mismatch Transformation, Avtom. Telemekh., 1990, no. 8, pp. 119–128.Google Scholar
  9. 9.
    Evans, R.J., Zhang, C., and Soh, Y.G., Bounded-Error Estimation Using Dead Zone and Bounded Ellipsoid, Int. J. Adapt. Control Signal Process., 1994, vol. 8, pp. 31–42.Google Scholar
  10. 10.
    Motzkin, Th. and Schoenberg, I.J., The Relaxation Method for Linear Inequalities, Can. J. Math., 1954, vol. 6, pp. 393–404.Google Scholar
  11. 11.
    Ermol'ev, Yu.M., Metody stokhasticheskogo programmirovaniya (Stochastic Programming Methods), Moscow: Nauka, 1976.Google Scholar
  12. 12.
    Fomin, V.N., Metody upravleniya lineinymi diskretmymi ob"ektami (Control Methods for Linear Discrete Systems), Leningrad: Leningr. Gos. Univ., 1985.Google Scholar
  13. 13.
    Fomin, V.N., Fradkov, A.L., and Yakubovich, V.A., Adaptivnoe upravlenie dinamicheskimi ob”ektami (Adaptive Control of Dynamic Systems), Moscow: Nauka, 1981.Google Scholar
  14. 14.
    Boldin, M.V., Simonova, G.I., and Tyurin, Yu.N., Znakovyi statisticheskii analiz lineinykh modelei (Statistical Signature Analysis of Linear Models), Moscow: Nauka, 1997.Google Scholar
  15. 15.
    Borovkov, A.A., Teoriya veroyatnostei (Probability Theory), Moscow: Editorial URSS, 1999.Google Scholar
  16. 16.
    Saridis, G.N., Self-Organizing Control of Stochastic Systems, New York: M. Dekker, 1977. Translated under the title Samoorganizuyushchiesya stokhasticheskie sistemy upravleniya, Moscow: Nauka, 1980.Google Scholar
  17. 17.
    Granichin, O.N. and Fomin, V.N., Adaptive Control with Test Signals in Feedback Channel, Avtom. Telemekh., 1986, no. 2, pp. 100–112.Google Scholar
  18. 18.
    Lyubich, Yu.I. and Maistrovskii, R.D., General Theory of Relaxation Processes, Usp. Mat. Nauk, 1970, vol. 25, no. 1, pp. 57–112.Google Scholar
  19. 19.
    Morozan, T., Sur l' approximation stochastique, C.R. Acad. Sci., 1967, ser. A. 264, vol. 14, pp. 633–635.Google Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2001

Authors and Affiliations

  • A. L. Bunich
    • 1
  1. 1.Trapeznikov Institute of Control SciencesRussian Academy of SciencesMoscowRussia

Personalised recommendations